# Available online through <u>www.rjpa.info</u> ISSN 2248-9037

## LOGICAL OPERATORS AND WEAK LATTICE GRAPHS

P. Srinivas<sup>1</sup> & M. Vijay Kumar<sup>2\*</sup>

H. No 6-8-25, Ravindra Nagar, Nalgonda. Sri Venkateswara Engineering College, Suryapet, Nalgonda, A.P., India

3-10-80, Reddy colony, Vagdevi P.G. College, Warangal, A.P., India

(Received on: 17-08-12; Accepted on: 31-08-12)

#### ABSTRACT

We introduce the logical operators  $\overline{L}$ ,  $\underline{L}$  and max –  $\overline{L}$ , that is composition  $\overline{L}$ . Also we Introduce weak lattice, subweak lattice. Finally we obtain some properties.

Key words: Set, Graphs, Logical operators, Weak lattice, Sub-week Lattice.

Mathematics Subject Classification 2000: 03E72, 03G1s0, 05C75.

## 1. INTRODUCTION

In crisp graphs the concept of internally stable sets, denoted Int(R) and externally stable sets, denoted Ext(R) of a given graph G = (X, R). A very important and interesting method for the determination of those sets uses of the algebraic formulation of these concepts [5, 7]. The properties of not external domination have been extended under some valued operators by Kitainik [4]. In section 3, we introduce the extension of composition law, weak lattice and sub-weak lattice in graphs. The structure of counterpart of the not externally dominated set denoted Ned( $\rho$ ) is completely determined. Finally, we develop some properties on weak lattice by using the set Ned ( $\rho$ ).

## 2. PRELIMINARIES

**Definition 2.1** [8]: A lattice is an algebraic system  $(L, \Lambda, V)$  with two binary operations  $\Lambda$  and V on a non empty set L which are both idempotent, commutative, associative and satisfy the absorption laws.

**Example 2.1**[1]: The algebraic system ( $\wp(X)$ ,  $\land$ ,  $\lor$ ) is a lattice under Zadeh's inclusion ( $\mu_1 \subseteq \mu_2 \Leftrightarrow (\forall x(\mu_1(x) \le \mu 2x))$ 

**Definition 2.2**[8]: Let  $(L, \land, \lor)$  be a lattice then the non empty subset S of the set L is said to be sub lattice if it is closed under the operations  $\land$  and  $\lor$  and of L, that is if  $(a \land b) \in S$  and  $(a \lor b) \in S, \forall a, b \in S$ .

**Definition 2.3** [1]: Let X be an arbitrary finite non empty set, R a crisp relation defined on X and G = (X, R) is the associated directed graph. If  $A \subseteq X$ , the set of the elements of X are dominated by A then the composition of A and B such that  $A \circ R = \{y \in X | (\exists xA)xRy\}$ .

**Definition 2.4** [1]: A subset A of a non empty set X is said to be not externally dominated (Ned) if "no element in A is dominated by an element in  $\bar{A}$ "  $(\forall y)[y \in A \Rightarrow (\forall x \in \bar{A})Not(xRy)]$ .

**Note:** The set of the not externally dominated sets of the crisp graph G = (X, R) for each  $A \subseteq X$ , is denoted by Ned(R).

Here  $\bar{A}$  is the complement of A in X such that  $\bar{A} = X - A$ .

**Proposition 2.1** [1]: Let G = (X, R) be a crisp loop free graph and  $A \subseteq X$  we have A is a Ned  $\Leftrightarrow \bar{A} \circ R \subseteq \bar{A} \Leftrightarrow A \circ R^{-1} \subseteq A$ .

#### 3. MAIN RESULTS

**Definition:** The logical operators  $\overline{L}$ ,  $\underline{L}$  and N are defined as follows, let  $\mu_1$  and  $\mu_2$  be any two sets of X then,  $\forall x \in X$  i.  $(\mu_1 \overline{L} \ \mu_2) = \max_{x \in X} \mu_1(x) + \mu_2(x) - 1,0$  ii.  $(\mu_1 \underline{L} \ \mu_2) = \min_{x \in X} \mu_1(x) + \mu_2(x), 1, and$  iii.  $N(\mu_1) = \overline{\mu_1(x)} = 1 - \mu_1(x)$ .

**Definition:** Let  $\mu, \rho$  be a subset and a relation respectively defined on a non empty set X and the composition [L], then the composition of  $\mu$  and  $\rho$  ( $\mu$  [L]  $\rho$ ) is defined as, for each  $x \in X$ ,

$$(\mu \boxed{L} \rho)(x) = \max_{y \in x} [\mu(x) + \rho(x, y) - 1, 0]$$

**Note:** In graph  $G = (\mu, \rho)$  with underlying set X where  $(\mu : X \to [0,1] \rho : X \times X \to [0,1]$  then the above composition  $[\underline{L}]$  can be defined as, for each  $a \in X$ ,  $(\mu(a)[\underline{L}]\rho(a)) = \max_{b \in X} Max[\mu(a) + \rho(a,b) - 1,0]$ 

**Proposition:** Let  $\rho_1, \rho_2 \in \mathcal{O}(X \times X)$  and  $\mu_1, \mu_2 \in \mathcal{O}(X)$  we have for any composition  $\overline{L}$  the following axioms are hold i.  $\ominus \overline{L} \rho_1 = \ominus$ 

i. 
$$\[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[\] \[\] \[\] \[ \] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\$$

#### **Proof:**

**I.** By the definition---- we have

$$(\bigcirc \boxed{L} \rho_1(x)) = \max_{y \in X} Max\{0 + \rho_1(x, y) - 1, 0\} = 0, \text{ Since } 0 \le \rho_1(x, y) \le 1 \forall x, y \in X$$

**II.** We know that  $\mu_1 \subseteq \mu_2 \Rightarrow \mu_1(x) \leq \mu_2(x)$  for all  $x \in X$ , then  $\exists y \in X$ , For any relation  $\rho_1(x, y)$  such that  $\mu_1(x) \geq \rho_1(x, y)$  and  $\mu_2(x) \geq \rho_1(x, y)$  we have

$$\Rightarrow [\mu_1(x) + \rho_1(x, y)] \leq [\mu_2(x) + \rho_1(x, y)]$$

$$\Rightarrow [\mu_1(x) + \rho_1(x, y) - 1] \le [\mu_2(x) + \rho_1(x, y) - 1]$$

 $Max\ Max\ [\mu_1(x) + \rho_1(x,y) - 1,0] \le Max\ Max[\mu_2(x) \ge \rho_1(x,y) - 1,0]$ 

$$\Rightarrow (\mu_1 L \rho_1)(x) \le (\mu_2 L \rho_1)(x)$$

$$\Rightarrow \left(\mu_1 \, \boxed{L} \, \rho_1 \,\right) \subseteq \left(\mu_2 \, \boxed{L} \, \rho_1 \,\right)$$

Therefore  $\mu_1 \subseteq \mu_2 \Rightarrow (\mu_1 \overline{L} \rho_1) \subseteq (\mu_2 \overline{L} \rho_1)$ 

**III.** We know that  $\rho_1 \subseteq \rho_2 \Leftrightarrow \rho_1(x,y) \leq \rho_2(x,y)$  for all  $x,y \in X$ 

$$\Rightarrow [\mu_1(x) + \rho_1(x, y)] \le [\mu_2(x) + \rho_2(x, y)]$$

Since  $\mu_1(x) \ge \rho_1(x, y)$  and  $\mu_2(x) \ge \rho_1(x, y)$ 

$$\Rightarrow [\mu_1(x) + \rho_1(x, y) - 1] \le [\mu_2(x) + \rho_2(x, y) - 1]$$

$$\Rightarrow$$
 Max Max  $[\mu_1(x) + \rho_1(x, y) - 1, 0] \leq$  Max Max  $[\mu_2(x) + \rho_2(x, y) - 1, 0]$ 

$$\Rightarrow (\mu_1 | \overline{L} | \rho_1)(x) \le (\mu_2 | \overline{L} | \rho_2)(x)$$

$$\Rightarrow (\mu_1 \ \overline{L} \ \rho_1) \subseteq (\mu_2 \ \overline{L} \ \rho_2)$$

Therefore 
$$\rho_1 \subseteq \sigma \Rightarrow (\mu_1 | \overline{L} | \rho_1) \subseteq (\mu_2 | \overline{L} | \rho_2)$$

**IV.** Since composition  $\overline{L}$  is associative, we have  $\left(\mu_1 \overline{L} \left(\rho_1 \overline{L} \rho_2\right)\right) = \left(\left(\mu_1 \overline{L} \rho_1\right) \overline{L} \rho_2\right)$ 

Since the definition of composition  $\overline{L}$ ,  $\overline{L}$  and the properties of t – norm arrive immediately. Therefore we have (V) and (IV).

**Example:** Let  $G = (\mu, \rho)$  be a graph where  $X = \{a, b, c, d, e\}$ .  $\mu: X \to [0,1]$ ,  $\rho: X \times X \to [0,1]$  as defined as

$$\mu(a) = 0.6, \mu(b) = 0.8, \mu(c) = 0.7, \mu(d) = 0.9, \mu(e) = 0.5,$$

$$\rho(a,b) = 0.4, \rho(b,c) = 0.7, \rho(c,d) = 0.5, \rho(b,d) = 0.6, \rho(e,d) = 0.5, \rho(a,e) = 0.3.$$

i. Is trivial

ii. If  $\mu(a) \le \mu(b) \Longrightarrow 0.6 \le 0.8$  consider  $\rho(a, b) = 0.4$ 

$$\left(\mu(a)\underline{L}\,\rho(a,b)\right) = \operatorname{Max}\operatorname{Max}[\,\mu(a) + \,\rho(a,b) - 1,0] = 0 \tag{1}$$

$$\left(\mu(b)\underline{L}\,\rho(a,b)\right) = \operatorname{Max}\operatorname{Max}[\,\mu(b) + \,\rho(a,b) - 1,0] = 0.2\tag{2}$$

From (1) and (2) we have  $\left(\mu(a)\underline{L}\rho(a,b)\right) \leq \left(\mu(b)\underline{L}\rho(a,b)\right)$ 

iii. If 
$$\rho(a,b) = 0.4$$
,  $\rho(b,c) = \sigma(b,c) = 0.7 \,\mu(a) = 0.6$  and  $\mu(b) = 0.8$ 

Now  $\rho(b,c) \le \sigma(b,c)$ 

$$\left(\mu(a)\underline{L}\,\rho(a,b)\right) = \operatorname{Max}\operatorname{Max}[\,\mu(a) + \,\rho(a,b) - 1,0] = 0\tag{3}$$

$$\left(\mu(a)\underline{L}\,\sigma(a,b)\right) = \operatorname{Max}\operatorname{Max}[\,\mu(a) + \,\sigma(a,b) - 1,0] = 0.5\tag{4}$$

From (3) and (4) we have  $\left(\mu(a) \boxed{L} \rho(a,b)\right) \leq \left(\mu(b) \boxed{L} \sigma(a,b)\right)$ 

iv. If 
$$\mu(a) = 0.6$$
,  $\rho(a, e) = 0.3$ ,  $\rho(a, d) = \sigma(a, d) = 0.5$   
v.  $(\mu(a) \underline{L} \rho(a, e)) = \text{Max } Max[\mu(a) + \rho(a, e) - 1, 0] = 0.1$ 

$$(\rho(a,e)L\sigma(a,d)) = \operatorname{Max} \operatorname{Max}[\rho(a,e) + \sigma(a,d) - 1,0] = 0$$

$$(\mu(a)\underline{L}(\rho(a,e)\underline{L}\sigma(a,d)))=0,$$

$$\left(\left(\mu(a)\underline{L}\,\rho(a,e)\right)\underline{L}\,\sigma(a,d)\right)=0$$

Therefore, we get  $\left(\mu(a)\underline{L}\left(\rho(a,e)\underline{L}\sigma(a,d)\right)\right) = \left(\left(\mu(a)\underline{L}\rho(a,e)\right)\underline{L}\sigma(a,d)\right)$ 

v. If 
$$\mu(b) = 0.8$$
,  $\mu(c) = 0.7$ ,  $\rho(c, d) = 0.7$ 

$$(\mu(b) \overline{L} \mu(c)) = \text{Max} Max[\mu(b) + \mu(b) - 1,0] = 0.5$$

$$\left(\left(\mu(b)\ \overline{L}\ \mu(c)\right)\ \underline{L}\right)\rho(c,d) = 0.2 \tag{5}$$

$$(\mu(b)\underline{L}\rho(c,b)) = 0.5, (\mu(c)\underline{L}\rho(c,b)) = 0.4$$

$$\left(\left(\mu(b)\underline{L}\rho(c,b)\right)\underline{L}\left(\mu(c)\underline{L}\rho(c,b)\right)\right) = \operatorname{Max}\operatorname{Max}[0.5 + 0.4 - 1,0] = 0 \tag{6}$$

From (5) and (6)

We have 
$$(\mu(b) \overline{L} \mu(c)) \underline{L} \rho(c,d) \ge ((\mu(b)\underline{L} \rho(c,b)) \overline{L} (\mu(c)\underline{L} \rho(c,b))).$$

vi. If 
$$\mu(d) = 0.9$$
,  $\rho(b, d) = \sigma(b, d) = 0.6$ ,  $\rho(e, d) = 0.5$ 

$$(\mu(d)\overline{L})(\rho(e,b)\overline{L}\sigma(d,b)) = 0$$

$$(\mu(d)\underline{L}\rho(e,d)) = 0.4, (\mu(d)\underline{L}\sigma(d,b)) = 0.5,$$

$$\left(\mu(d)\underline{L}\,\rho(e,d)\right)\overline{L}\left(\mu(d)\underline{L}\,\sigma(d,b)\right)=0,$$

Therefore, we have 
$$\left(\mu(d)\underline{L}\right]\left(\rho(e,d)\overline{L}\sigma(d,b)\right) = \left(\mu(d)\underline{L}\right]\rho(e,d)\overline{L}\left(\mu(d)\underline{L}\right]\sigma(d,b)$$
.

From the above example we consider  $\mu(b) = 0.8$ ,  $\rho(b,d) = 0.6$ ,  $\rho(b,c) = \sigma(b,c) = 0.7$ 

$$\left(\rho(b,d)\overline{L}\sigma(b,c)\right) = 0.3$$

$$\left(\mu(b)\,\overline{L}\,\rho(b,d)\,\overline{L}\,\sigma(b,c)\right) = 0.1\tag{7}$$

$$(\mu(b) \underline{L} \rho(b,d)) = 0.4, (\mu(b) \underline{L} \sigma(b,c)) = 0.5$$

$$\left(\mu(b)\,\underline{L}\,\rho(b,d)\right)\underline{L}\left(\mu(b)\,\underline{L}\,\sigma(b,c)\right) = 0\tag{8}$$

From (7) and (8) we have 
$$\left(\mu(b) \, \underline{L} \, \left(\rho(b,d) \overline{L} \sigma(b,c)\right)\right) \geq \left(\mu(b) \, \underline{L} \, \rho(b,d)\right) \, \overline{L} (\mu(b) \, \underline{L} \, \sigma(b,c))$$
.

Hence Property (vi). Does not hold

Remarks: the following axioms

i. 
$$((\mu_1 \underline{L} \mu_2) \underline{L} \rho) = (\mu_1 \underline{L} \rho) \underline{L} (\mu_2 \underline{L} \rho)$$

ii. 
$$(\mu_1 L \rho) = (\mu_1 \rho) L \rho$$

But we get 
$$((\mu_1 \underline{L} \mu_2) \underline{L} \rho) \ge (\mu_1 \underline{L} \rho) \underline{L} (\mu_2 \underline{L} \rho)$$
 and

$$\left(\mu_1\, \boxed{L}\, \left(\rho\, \underline{L}\, \sigma\right)\right) \, \geq \, \left(\mu_1\, \boxed{L}\, \rho\right)\, \underline{L}\, (\mu_1\, \boxed{L}\, \sigma).$$

**Definition:** a weak lattice is an algebraic system  $(W, \overline{L}, \underline{L})$  with two binary logical operators  $\overline{L}$  and  $\underline{L}$  on non empty set W which satisfies both commutative and associative laws.

i. Commutative laws: 
$$(a \overline{L} b) = (b \overline{L} a)$$
 and  $(a \underline{L} b) = (b \underline{L} a)$ 

ii. Associative law: 
$$(a \,\overline{L}\, b)\overline{L}\, c = a \,\overline{L}\, (b \,\overline{L}\, c)$$
 and  $(a\underline{L}\, b)\underline{L}\, c = a \,\underline{L}\, (b \,\underline{L}\, c) \,\forall \, a,b,and \, c \,\epsilon \,W$ 

**Remarks:** in this paper we consider an algebraic system  $(\wp(X), \overline{L}, \underline{L})$  is a weak lattice under inclusion  $\mu_1 \subseteq \mu_2 \Leftrightarrow (\forall X(\mu_1(x) \leq \mu_2(x)))$ . let  $G = (\mu, \rho)$  be a graph, then  $(\mu(x), \overline{L}, \underline{L})$  is a week lattice under condition for each  $a, b \in X \Rightarrow \mu(a) \leq \mu(b)$  and the composition  $\overline{L}$ .

**Example:** let  $\mu_1$  and  $\mu_2$  be any sets of  $(\wp(X))$  where  $\mu_1(x) = 0.4$ ,  $\mu_2(x) = 0.7$  and  $\mu_3(x) = 0.6$  for each  $x \in X$ , then we have

1) Idempotent Laws:

i. 
$$\left(\mu_1 \overline{L} \mu_2\right) = 0 \neq \mu_1$$

ii.  $(\mu_1 \underline{L} \mu_2) = 0.8 \neq \mu_1$ , Therefore, idempotent Laws are not satisfied.

## P. Srinivas<sup>1</sup> & M. Vijay Kumar<sup>2\*</sup>/Logical Operators and week Lattice Graphs/RJPA- 2(8), August-2012.

2) Commutative Laws:

i. 
$$(\mu_1 \overline{L} \mu_2) = 0.1 = (\mu_2 \overline{L} \mu_1)$$

ii.  $(\mu_1 \underline{L} \mu_2) = 1 = (\mu_2 \underline{L} \mu_1)$ , Therefore, Commutative laws are satisfied.

3) Associative Laws:

i. 
$$(\mu_1 \overline{L} \mu_2) \overline{L} \mu_3 = 0 = \mu_1 \overline{L} (\mu_2 \overline{L} \mu_3)$$

ii.  $(\mu_1 \underline{L} \mu_2) \underline{L} \mu_3 = 1 = \mu_1 \underline{L} (\mu_2 \underline{L} \mu_3)$ , Therefore Associative laws satisfied.

4) Absorption Laws:

i. 
$$\mu_1 \, \overline{L} \, (\mu_1 \, L \, \mu_2) = 0.4 = \mu_1$$

ii. 
$$\mu_1 \underline{L} (\mu_1 \overline{L} \mu_2) = 0.5 \neq \mu_1$$

Suppose if  $\mu_1(x) = 0.2$ ,  $\mu_2(x) = 0.6$  then we have  $\mu_1 \overline{L}(\mu_1 \underline{L} \mu_2) = 0 \neq \mu_1$  therefore absorption laws are not satisfied. Hence  $(\wp(X), \overline{L}, L)$  is a week lattice.

**Definition:** Let  $(W, \overline{L}, \underline{L})$  is a weak lattice then the two non empty sets S of the set W is said to be sub – weak lattice if it is closed under the operations  $\overline{L}$ , and  $\underline{L}$  that is if  $(a \overline{L} b) \in S$  and  $(a \underline{L} b) \in S$ ,  $\forall a, b \in S$ .

**Definition:** let  $G = (\mu, \rho)$  be a graph without loops and with underlying set X where  $\mu: X \to [0,1]$ ,  $\rho: X \times X \to [0,1]$  and  $a, b \in X$  we shall say that in G a is composition  $\overline{L}$  Ned  $\iff$   $\left(\left(\overline{\mu(a)}\underline{L}\right)\rho(a,b)\right) \le \overline{\mu(a)}\right)$  and  $\left(\mu(a)\underline{L}\right)\rho^{-1}(a,b) \le \mu a$ . We denote it by Ned  $\rho, L$ , the set of all sets satisfying the equivalent condition.

## Proposition of the set Ned $(\rho, L)$

**Proposition:** let  $G = (\mu, \rho)$  be a graph without loops and with underlying set X where  $\mu: X \to [0,1]$ ,  $\rho: X \times X \to [0,1]$  and  $\alpha \in X$  the set Ned  $(\rho, \overline{L})$ i. Is a sub – weak lattice of  $(\mu(X), \overline{L}, L)$ 

ii. Contains any constant k.1 of set  $(\wp(X))$ 

#### **Proof:**

i. Let 
$$a, b \in Ned(\rho, \overline{L})$$
 then we have, 
$$\left(\mu(a)\overline{L}\rho^{-1}(a, b) \le \mu(a)\right) and \left(\mu(b)\overline{L}\rho^{-1}(a, b) \le \mu(b)\right) \tag{9}$$

$$\left(\left(\overline{\mu(a)}\underline{L}\rho(a,b)\right) \leq \overline{\mu(a)}\right) \ and \ \left(\left(\overline{\mu(b)}\underline{L}\rho(b,a)\right) \leq \overline{\mu(b)}\right) \tag{10}$$

To prove  $((\mu(a)\overline{L}\mu(b))\underline{L}\rho^{-1}(a,b) \leq (\mu(a)\overline{L}\mu(b))$ 

 $\operatorname{Now}\left(\left(\mu(a)\overline{L}\mu(b)\right)\underline{L}\rho^{-1}(a,b) \leq (\mu(a)\,\underline{L}\rho^{-1}(a,b))\overline{L}(\mu(b)\underline{L}\rho^{-1}(a,b))$ 

$$\leq \left(\mu(a)\overline{L}\,\mu(b)\right)$$
 from (9)

Similarly, we to prove that  $\overline{\left(\mu(a)\overline{L}\mu(b)\right)}\overline{L}\rho(a,b) \leq \overline{\left(\mu(a)\overline{L}\mu(b)\right)}$  from (10)

Same method for the operator  $\underline{L}$ , we have  $\overline{\left(\mu(a)\underline{L}\mu(b)\right)}\overline{L}$   $\rho(a,b) \leq \overline{\left(\mu(a)\underline{L}\mu(b)\right)}$  and

$$\left(\left(\mu(a)\ \underline{L}\ \mu(b)\right)\boxed{L}\ \rho(a,b)\right) \leq \left(\mu(a)\ \underline{L}\ \mu(b)\right).$$

## P. Srinivas<sup>1</sup> & M. Vijay Kumar<sup>2\*</sup>/Logical Operators and week Lattice Graphs/RJPA- 2(8), August-2012.

Hence Ned  $(\rho, \overline{L})$  is a sub-weak lattice of  $(\mu(X), \overline{L}, \underline{L})$ 

ii. Let  $k \in [0,1] \ \forall \ x \in X$  then  $\exists \ y \in X$ ,

iii. 
$$((k.1)\overline{L})\rho^{-1}(x,y)$$
 =  $Max\ Max\ [k+\rho^{-1}(x,y)-1,0] \le ksince\ 0 \le \rho(x,y) \le$  (11)

$$\operatorname{And}\left(\left(\overline{k},1\right)\underline{L}\right)\rho(x,y) = \operatorname{Max}\operatorname{Max}\left[\overline{k} + \rho(x,y) - 1,0\right] \le \overline{k}$$

$$\tag{12}$$

From (11) and (12), we get condition for an element in Ned  $(\rho, \overline{L})$ 

Hence (ii) proved

Example: if  $k \in [0,1]$  and any relation  $\rho$  of a non empty set X such that  $0 \le \rho(x,y) \le 1$  for all  $x, y \in X$  consider k = 0.6 and  $\rho(x,y) = 0.6$  Then

$$((k.1)\overline{L})\rho^{-1}(x,y)$$
 =  $Max Max \{0.6 + 0.6 - 1.0\} = 0.2$ 

$$= 0.2 \le 0.6 = k \tag{13}$$

And  $((k.1)\underline{L})\rho(x,y) = Max Max \{\overline{k} + \rho(x,y) - 1,0\}$ 

$$= Max Max \{0.4 + 0.6 - 1.0\} = 0 \le \overline{k} = 0.4 \tag{14}$$

From (13) and (14) we have the conditions (11) and (12) respectively

Hence the condition (ii) of proposition 3.2 is proved.

#### REFERENCES:

- [1] Assia Alaui et al., On fuzzification of some concepts of graph, Fuzzy sets and system 101(1999), 363-389.
- [2] Dubois, H Prade, Fuzzy sets and Sytems: Theory and Applications, Mathematics in Science and Engineering.vol-144, Aczdemic Press, New York, 1980.
- [3] J. Jacas, J. Recasens, Eigen vectors and generators of fuzzy relation, IEEE internat. conf. on Fuzzy systems, san Diego,1992.
- [4] L.Kitainik, Fuzzy Decision Procedures with Binary Relations Theory and Applications, Kluwer Academic Publishers, Dordrecht, 1993.
- [5] L. Kitainik, Fuzzy inclusion and fuzzy dichotomous decision procedures, In: J. Kacprzyk, S.A. Orlovski (Eds), Optimization Models using Fuzzy sets and possibility Theory, D. Reidel, Dordrecht, 1987, pp. 154-170.
- [6] Rosenfeld, A., Fuzzy graphs. In: L.A. Zadeh, K.S. Fu and M. Shimura, Eds, Fuzzy sets and their Applications, Academic press, New York, 77-95, 1975.
- [7] B. Roy, Algebre Moderne et Theorie des Graphes, Dunod, Paris, 1970.
- [8] J.P. Tremblay, R. Manohar, Discrete Mathematical Structures with Applications to Computer Science, Tata McGraw-Hill Publishing Company Limited, New Delhi, 1997.
- [9] L. A. Zadeh, Fuzzy sets, Inform and Control 8 (1965), 338-353.

\*\*\*\*\*\*\*\*