Available online through <u>www.rjpa.info</u> ISSN 2248-9037 ## LOGICAL OPERATORS AND WEAK LATTICE GRAPHS P. Srinivas¹ & M. Vijay Kumar^{2*} H. No 6-8-25, Ravindra Nagar, Nalgonda. Sri Venkateswara Engineering College, Suryapet, Nalgonda, A.P., India 3-10-80, Reddy colony, Vagdevi P.G. College, Warangal, A.P., India (Received on: 17-08-12; Accepted on: 31-08-12) #### ABSTRACT We introduce the logical operators \overline{L} , \underline{L} and max – \overline{L} , that is composition \overline{L} . Also we Introduce weak lattice, subweak lattice. Finally we obtain some properties. Key words: Set, Graphs, Logical operators, Weak lattice, Sub-week Lattice. Mathematics Subject Classification 2000: 03E72, 03G1s0, 05C75. ## 1. INTRODUCTION In crisp graphs the concept of internally stable sets, denoted Int(R) and externally stable sets, denoted Ext(R) of a given graph G = (X, R). A very important and interesting method for the determination of those sets uses of the algebraic formulation of these concepts [5, 7]. The properties of not external domination have been extended under some valued operators by Kitainik [4]. In section 3, we introduce the extension of composition law, weak lattice and sub-weak lattice in graphs. The structure of counterpart of the not externally dominated set denoted Ned(ρ) is completely determined. Finally, we develop some properties on weak lattice by using the set Ned (ρ). ## 2. PRELIMINARIES **Definition 2.1** [8]: A lattice is an algebraic system (L, Λ, V) with two binary operations Λ and V on a non empty set L which are both idempotent, commutative, associative and satisfy the absorption laws. **Example 2.1**[1]: The algebraic system ($\wp(X)$, \land , \lor) is a lattice under Zadeh's inclusion ($\mu_1 \subseteq \mu_2 \Leftrightarrow (\forall x(\mu_1(x) \le \mu 2x))$ **Definition 2.2**[8]: Let (L, \land, \lor) be a lattice then the non empty subset S of the set L is said to be sub lattice if it is closed under the operations \land and \lor and of L, that is if $(a \land b) \in S$ and $(a \lor b) \in S, \forall a, b \in S$. **Definition 2.3** [1]: Let X be an arbitrary finite non empty set, R a crisp relation defined on X and G = (X, R) is the associated directed graph. If $A \subseteq X$, the set of the elements of X are dominated by A then the composition of A and B such that $A \circ R = \{y \in X | (\exists xA)xRy\}$. **Definition 2.4** [1]: A subset A of a non empty set X is said to be not externally dominated (Ned) if "no element in A is dominated by an element in \bar{A} " $(\forall y)[y \in A \Rightarrow (\forall x \in \bar{A})Not(xRy)]$. **Note:** The set of the not externally dominated sets of the crisp graph G = (X, R) for each $A \subseteq X$, is denoted by Ned(R). Here \bar{A} is the complement of A in X such that $\bar{A} = X - A$. **Proposition 2.1** [1]: Let G = (X, R) be a crisp loop free graph and $A \subseteq X$ we have A is a Ned $\Leftrightarrow \bar{A} \circ R \subseteq \bar{A} \Leftrightarrow A \circ R^{-1} \subseteq A$. #### 3. MAIN RESULTS **Definition:** The logical operators \overline{L} , \underline{L} and N are defined as follows, let μ_1 and μ_2 be any two sets of X then, $\forall x \in X$ i. $(\mu_1 \overline{L} \ \mu_2) = \max_{x \in X} \mu_1(x) + \mu_2(x) - 1,0$ ii. $(\mu_1 \underline{L} \ \mu_2) = \min_{x \in X} \mu_1(x) + \mu_2(x), 1, and$ iii. $N(\mu_1) = \overline{\mu_1(x)} = 1 - \mu_1(x)$. **Definition:** Let μ, ρ be a subset and a relation respectively defined on a non empty set X and the composition [L], then the composition of μ and ρ (μ [L] ρ) is defined as, for each $x \in X$, $$(\mu \boxed{L} \rho)(x) = \max_{y \in x} [\mu(x) + \rho(x, y) - 1, 0]$$ **Note:** In graph $G = (\mu, \rho)$ with underlying set X where $(\mu : X \to [0,1] \rho : X \times X \to [0,1]$ then the above composition $[\underline{L}]$ can be defined as, for each $a \in X$, $(\mu(a)[\underline{L}]\rho(a)) = \max_{b \in X} Max[\mu(a) + \rho(a,b) - 1,0]$ **Proposition:** Let $\rho_1, \rho_2 \in \mathcal{O}(X \times X)$ and $\mu_1, \mu_2 \in \mathcal{O}(X)$ we have for any composition \overline{L} the following axioms are hold i. $\ominus \overline{L} \rho_1 = \ominus$ i. $$\[\] \[\] \[\] \[\] \[\] \[\$$ #### **Proof:** **I.** By the definition---- we have $$(\bigcirc \boxed{L} \rho_1(x)) = \max_{y \in X} Max\{0 + \rho_1(x, y) - 1, 0\} = 0, \text{ Since } 0 \le \rho_1(x, y) \le 1 \forall x, y \in X$$ **II.** We know that $\mu_1 \subseteq \mu_2 \Rightarrow \mu_1(x) \leq \mu_2(x)$ for all $x \in X$, then $\exists y \in X$, For any relation $\rho_1(x, y)$ such that $\mu_1(x) \geq \rho_1(x, y)$ and $\mu_2(x) \geq \rho_1(x, y)$ we have $$\Rightarrow [\mu_1(x) + \rho_1(x, y)] \leq [\mu_2(x) + \rho_1(x, y)]$$ $$\Rightarrow [\mu_1(x) + \rho_1(x, y) - 1] \le [\mu_2(x) + \rho_1(x, y) - 1]$$ $Max\ Max\ [\mu_1(x) + \rho_1(x,y) - 1,0] \le Max\ Max[\mu_2(x) \ge \rho_1(x,y) - 1,0]$ $$\Rightarrow (\mu_1 L \rho_1)(x) \le (\mu_2 L \rho_1)(x)$$ $$\Rightarrow \left(\mu_1 \, \boxed{L} \, \rho_1 \,\right) \subseteq \left(\mu_2 \, \boxed{L} \, \rho_1 \,\right)$$ Therefore $\mu_1 \subseteq \mu_2 \Rightarrow (\mu_1 \overline{L} \rho_1) \subseteq (\mu_2 \overline{L} \rho_1)$ **III.** We know that $\rho_1 \subseteq \rho_2 \Leftrightarrow \rho_1(x,y) \leq \rho_2(x,y)$ for all $x,y \in X$ $$\Rightarrow [\mu_1(x) + \rho_1(x, y)] \le [\mu_2(x) + \rho_2(x, y)]$$ Since $\mu_1(x) \ge \rho_1(x, y)$ and $\mu_2(x) \ge \rho_1(x, y)$ $$\Rightarrow [\mu_1(x) + \rho_1(x, y) - 1] \le [\mu_2(x) + \rho_2(x, y) - 1]$$ $$\Rightarrow$$ Max Max $[\mu_1(x) + \rho_1(x, y) - 1, 0] \leq$ Max Max $[\mu_2(x) + \rho_2(x, y) - 1, 0]$ $$\Rightarrow (\mu_1 | \overline{L} | \rho_1)(x) \le (\mu_2 | \overline{L} | \rho_2)(x)$$ $$\Rightarrow (\mu_1 \ \overline{L} \ \rho_1) \subseteq (\mu_2 \ \overline{L} \ \rho_2)$$ Therefore $$\rho_1 \subseteq \sigma \Rightarrow (\mu_1 | \overline{L} | \rho_1) \subseteq (\mu_2 | \overline{L} | \rho_2)$$ **IV.** Since composition \overline{L} is associative, we have $\left(\mu_1 \overline{L} \left(\rho_1 \overline{L} \rho_2\right)\right) = \left(\left(\mu_1 \overline{L} \rho_1\right) \overline{L} \rho_2\right)$ Since the definition of composition \overline{L} , \overline{L} and the properties of t – norm arrive immediately. Therefore we have (V) and (IV). **Example:** Let $G = (\mu, \rho)$ be a graph where $X = \{a, b, c, d, e\}$. $\mu: X \to [0,1]$, $\rho: X \times X \to [0,1]$ as defined as $$\mu(a) = 0.6, \mu(b) = 0.8, \mu(c) = 0.7, \mu(d) = 0.9, \mu(e) = 0.5,$$ $$\rho(a,b) = 0.4, \rho(b,c) = 0.7, \rho(c,d) = 0.5, \rho(b,d) = 0.6, \rho(e,d) = 0.5, \rho(a,e) = 0.3.$$ i. Is trivial ii. If $\mu(a) \le \mu(b) \Longrightarrow 0.6 \le 0.8$ consider $\rho(a, b) = 0.4$ $$\left(\mu(a)\underline{L}\,\rho(a,b)\right) = \operatorname{Max}\operatorname{Max}[\,\mu(a) + \,\rho(a,b) - 1,0] = 0 \tag{1}$$ $$\left(\mu(b)\underline{L}\,\rho(a,b)\right) = \operatorname{Max}\operatorname{Max}[\,\mu(b) + \,\rho(a,b) - 1,0] = 0.2\tag{2}$$ From (1) and (2) we have $\left(\mu(a)\underline{L}\rho(a,b)\right) \leq \left(\mu(b)\underline{L}\rho(a,b)\right)$ iii. If $$\rho(a,b) = 0.4$$, $\rho(b,c) = \sigma(b,c) = 0.7 \,\mu(a) = 0.6$ and $\mu(b) = 0.8$ Now $\rho(b,c) \le \sigma(b,c)$ $$\left(\mu(a)\underline{L}\,\rho(a,b)\right) = \operatorname{Max}\operatorname{Max}[\,\mu(a) + \,\rho(a,b) - 1,0] = 0\tag{3}$$ $$\left(\mu(a)\underline{L}\,\sigma(a,b)\right) = \operatorname{Max}\operatorname{Max}[\,\mu(a) + \,\sigma(a,b) - 1,0] = 0.5\tag{4}$$ From (3) and (4) we have $\left(\mu(a) \boxed{L} \rho(a,b)\right) \leq \left(\mu(b) \boxed{L} \sigma(a,b)\right)$ iv. If $$\mu(a) = 0.6$$, $\rho(a, e) = 0.3$, $\rho(a, d) = \sigma(a, d) = 0.5$ v. $(\mu(a) \underline{L} \rho(a, e)) = \text{Max } Max[\mu(a) + \rho(a, e) - 1, 0] = 0.1$ $$(\rho(a,e)L\sigma(a,d)) = \operatorname{Max} \operatorname{Max}[\rho(a,e) + \sigma(a,d) - 1,0] = 0$$ $$(\mu(a)\underline{L}(\rho(a,e)\underline{L}\sigma(a,d)))=0,$$ $$\left(\left(\mu(a)\underline{L}\,\rho(a,e)\right)\underline{L}\,\sigma(a,d)\right)=0$$ Therefore, we get $\left(\mu(a)\underline{L}\left(\rho(a,e)\underline{L}\sigma(a,d)\right)\right) = \left(\left(\mu(a)\underline{L}\rho(a,e)\right)\underline{L}\sigma(a,d)\right)$ v. If $$\mu(b) = 0.8$$, $\mu(c) = 0.7$, $\rho(c, d) = 0.7$ $$(\mu(b) \overline{L} \mu(c)) = \text{Max} Max[\mu(b) + \mu(b) - 1,0] = 0.5$$ $$\left(\left(\mu(b)\ \overline{L}\ \mu(c)\right)\ \underline{L}\right)\rho(c,d) = 0.2 \tag{5}$$ $$(\mu(b)\underline{L}\rho(c,b)) = 0.5, (\mu(c)\underline{L}\rho(c,b)) = 0.4$$ $$\left(\left(\mu(b)\underline{L}\rho(c,b)\right)\underline{L}\left(\mu(c)\underline{L}\rho(c,b)\right)\right) = \operatorname{Max}\operatorname{Max}[0.5 + 0.4 - 1,0] = 0 \tag{6}$$ From (5) and (6) We have $$(\mu(b) \overline{L} \mu(c)) \underline{L} \rho(c,d) \ge ((\mu(b)\underline{L} \rho(c,b)) \overline{L} (\mu(c)\underline{L} \rho(c,b))).$$ vi. If $$\mu(d) = 0.9$$, $\rho(b, d) = \sigma(b, d) = 0.6$, $\rho(e, d) = 0.5$ $$(\mu(d)\overline{L})(\rho(e,b)\overline{L}\sigma(d,b)) = 0$$ $$(\mu(d)\underline{L}\rho(e,d)) = 0.4, (\mu(d)\underline{L}\sigma(d,b)) = 0.5,$$ $$\left(\mu(d)\underline{L}\,\rho(e,d)\right)\overline{L}\left(\mu(d)\underline{L}\,\sigma(d,b)\right)=0,$$ Therefore, we have $$\left(\mu(d)\underline{L}\right]\left(\rho(e,d)\overline{L}\sigma(d,b)\right) = \left(\mu(d)\underline{L}\right]\rho(e,d)\overline{L}\left(\mu(d)\underline{L}\right]\sigma(d,b)$$. From the above example we consider $\mu(b) = 0.8$, $\rho(b,d) = 0.6$, $\rho(b,c) = \sigma(b,c) = 0.7$ $$\left(\rho(b,d)\overline{L}\sigma(b,c)\right) = 0.3$$ $$\left(\mu(b)\,\overline{L}\,\rho(b,d)\,\overline{L}\,\sigma(b,c)\right) = 0.1\tag{7}$$ $$(\mu(b) \underline{L} \rho(b,d)) = 0.4, (\mu(b) \underline{L} \sigma(b,c)) = 0.5$$ $$\left(\mu(b)\,\underline{L}\,\rho(b,d)\right)\underline{L}\left(\mu(b)\,\underline{L}\,\sigma(b,c)\right) = 0\tag{8}$$ From (7) and (8) we have $$\left(\mu(b) \, \underline{L} \, \left(\rho(b,d) \overline{L} \sigma(b,c)\right)\right) \geq \left(\mu(b) \, \underline{L} \, \rho(b,d)\right) \, \overline{L} (\mu(b) \, \underline{L} \, \sigma(b,c))$$. Hence Property (vi). Does not hold Remarks: the following axioms i. $$((\mu_1 \underline{L} \mu_2) \underline{L} \rho) = (\mu_1 \underline{L} \rho) \underline{L} (\mu_2 \underline{L} \rho)$$ ii. $$(\mu_1 L \rho) = (\mu_1 \rho) L \rho$$ But we get $$((\mu_1 \underline{L} \mu_2) \underline{L} \rho) \ge (\mu_1 \underline{L} \rho) \underline{L} (\mu_2 \underline{L} \rho)$$ and $$\left(\mu_1\, \boxed{L}\, \left(\rho\, \underline{L}\, \sigma\right)\right) \, \geq \, \left(\mu_1\, \boxed{L}\, \rho\right)\, \underline{L}\, (\mu_1\, \boxed{L}\, \sigma).$$ **Definition:** a weak lattice is an algebraic system $(W, \overline{L}, \underline{L})$ with two binary logical operators \overline{L} and \underline{L} on non empty set W which satisfies both commutative and associative laws. i. Commutative laws: $$(a \overline{L} b) = (b \overline{L} a)$$ and $(a \underline{L} b) = (b \underline{L} a)$ ii. Associative law: $$(a \,\overline{L}\, b)\overline{L}\, c = a \,\overline{L}\, (b \,\overline{L}\, c)$$ and $(a\underline{L}\, b)\underline{L}\, c = a \,\underline{L}\, (b \,\underline{L}\, c) \,\forall \, a,b,and \, c \,\epsilon \,W$ **Remarks:** in this paper we consider an algebraic system $(\wp(X), \overline{L}, \underline{L})$ is a weak lattice under inclusion $\mu_1 \subseteq \mu_2 \Leftrightarrow (\forall X(\mu_1(x) \leq \mu_2(x)))$. let $G = (\mu, \rho)$ be a graph, then $(\mu(x), \overline{L}, \underline{L})$ is a week lattice under condition for each $a, b \in X \Rightarrow \mu(a) \leq \mu(b)$ and the composition \overline{L} . **Example:** let μ_1 and μ_2 be any sets of $(\wp(X))$ where $\mu_1(x) = 0.4$, $\mu_2(x) = 0.7$ and $\mu_3(x) = 0.6$ for each $x \in X$, then we have 1) Idempotent Laws: i. $$\left(\mu_1 \overline{L} \mu_2\right) = 0 \neq \mu_1$$ ii. $(\mu_1 \underline{L} \mu_2) = 0.8 \neq \mu_1$, Therefore, idempotent Laws are not satisfied. ## P. Srinivas¹ & M. Vijay Kumar^{2*}/Logical Operators and week Lattice Graphs/RJPA- 2(8), August-2012. 2) Commutative Laws: i. $$(\mu_1 \overline{L} \mu_2) = 0.1 = (\mu_2 \overline{L} \mu_1)$$ ii. $(\mu_1 \underline{L} \mu_2) = 1 = (\mu_2 \underline{L} \mu_1)$, Therefore, Commutative laws are satisfied. 3) Associative Laws: i. $$(\mu_1 \overline{L} \mu_2) \overline{L} \mu_3 = 0 = \mu_1 \overline{L} (\mu_2 \overline{L} \mu_3)$$ ii. $(\mu_1 \underline{L} \mu_2) \underline{L} \mu_3 = 1 = \mu_1 \underline{L} (\mu_2 \underline{L} \mu_3)$, Therefore Associative laws satisfied. 4) Absorption Laws: i. $$\mu_1 \, \overline{L} \, (\mu_1 \, L \, \mu_2) = 0.4 = \mu_1$$ ii. $$\mu_1 \underline{L} (\mu_1 \overline{L} \mu_2) = 0.5 \neq \mu_1$$ Suppose if $\mu_1(x) = 0.2$, $\mu_2(x) = 0.6$ then we have $\mu_1 \overline{L}(\mu_1 \underline{L} \mu_2) = 0 \neq \mu_1$ therefore absorption laws are not satisfied. Hence $(\wp(X), \overline{L}, L)$ is a week lattice. **Definition:** Let $(W, \overline{L}, \underline{L})$ is a weak lattice then the two non empty sets S of the set W is said to be sub – weak lattice if it is closed under the operations \overline{L} , and \underline{L} that is if $(a \overline{L} b) \in S$ and $(a \underline{L} b) \in S$, $\forall a, b \in S$. **Definition:** let $G = (\mu, \rho)$ be a graph without loops and with underlying set X where $\mu: X \to [0,1]$, $\rho: X \times X \to [0,1]$ and $a, b \in X$ we shall say that in G a is composition \overline{L} Ned \iff $\left(\left(\overline{\mu(a)}\underline{L}\right)\rho(a,b)\right) \le \overline{\mu(a)}\right)$ and $\left(\mu(a)\underline{L}\right)\rho^{-1}(a,b) \le \mu a$. We denote it by Ned ρ, L , the set of all sets satisfying the equivalent condition. ## Proposition of the set Ned (ρ, L) **Proposition:** let $G = (\mu, \rho)$ be a graph without loops and with underlying set X where $\mu: X \to [0,1]$, $\rho: X \times X \to [0,1]$ and $\alpha \in X$ the set Ned (ρ, \overline{L}) i. Is a sub – weak lattice of $(\mu(X), \overline{L}, L)$ ii. Contains any constant k.1 of set $(\wp(X))$ #### **Proof:** i. Let $$a, b \in Ned(\rho, \overline{L})$$ then we have, $$\left(\mu(a)\overline{L}\rho^{-1}(a, b) \le \mu(a)\right) and \left(\mu(b)\overline{L}\rho^{-1}(a, b) \le \mu(b)\right) \tag{9}$$ $$\left(\left(\overline{\mu(a)}\underline{L}\rho(a,b)\right) \leq \overline{\mu(a)}\right) \ and \ \left(\left(\overline{\mu(b)}\underline{L}\rho(b,a)\right) \leq \overline{\mu(b)}\right) \tag{10}$$ To prove $((\mu(a)\overline{L}\mu(b))\underline{L}\rho^{-1}(a,b) \leq (\mu(a)\overline{L}\mu(b))$ $\operatorname{Now}\left(\left(\mu(a)\overline{L}\mu(b)\right)\underline{L}\rho^{-1}(a,b) \leq (\mu(a)\,\underline{L}\rho^{-1}(a,b))\overline{L}(\mu(b)\underline{L}\rho^{-1}(a,b))$ $$\leq \left(\mu(a)\overline{L}\,\mu(b)\right)$$ from (9) Similarly, we to prove that $\overline{\left(\mu(a)\overline{L}\mu(b)\right)}\overline{L}\rho(a,b) \leq \overline{\left(\mu(a)\overline{L}\mu(b)\right)}$ from (10) Same method for the operator \underline{L} , we have $\overline{\left(\mu(a)\underline{L}\mu(b)\right)}\overline{L}$ $\rho(a,b) \leq \overline{\left(\mu(a)\underline{L}\mu(b)\right)}$ and $$\left(\left(\mu(a)\ \underline{L}\ \mu(b)\right)\boxed{L}\ \rho(a,b)\right) \leq \left(\mu(a)\ \underline{L}\ \mu(b)\right).$$ ## P. Srinivas¹ & M. Vijay Kumar^{2*}/Logical Operators and week Lattice Graphs/RJPA- 2(8), August-2012. Hence Ned (ρ, \overline{L}) is a sub-weak lattice of $(\mu(X), \overline{L}, \underline{L})$ ii. Let $k \in [0,1] \ \forall \ x \in X$ then $\exists \ y \in X$, iii. $$((k.1)\overline{L})\rho^{-1}(x,y)$$ = $Max\ Max\ [k+\rho^{-1}(x,y)-1,0] \le ksince\ 0 \le \rho(x,y) \le$ (11) $$\operatorname{And}\left(\left(\overline{k},1\right)\underline{L}\right)\rho(x,y) = \operatorname{Max}\operatorname{Max}\left[\overline{k} + \rho(x,y) - 1,0\right] \le \overline{k}$$ $$\tag{12}$$ From (11) and (12), we get condition for an element in Ned (ρ, \overline{L}) Hence (ii) proved Example: if $k \in [0,1]$ and any relation ρ of a non empty set X such that $0 \le \rho(x,y) \le 1$ for all $x, y \in X$ consider k = 0.6 and $\rho(x,y) = 0.6$ Then $$((k.1)\overline{L})\rho^{-1}(x,y)$$ = $Max Max \{0.6 + 0.6 - 1.0\} = 0.2$ $$= 0.2 \le 0.6 = k \tag{13}$$ And $((k.1)\underline{L})\rho(x,y) = Max Max \{\overline{k} + \rho(x,y) - 1,0\}$ $$= Max Max \{0.4 + 0.6 - 1.0\} = 0 \le \overline{k} = 0.4 \tag{14}$$ From (13) and (14) we have the conditions (11) and (12) respectively Hence the condition (ii) of proposition 3.2 is proved. #### REFERENCES: - [1] Assia Alaui et al., On fuzzification of some concepts of graph, Fuzzy sets and system 101(1999), 363-389. - [2] Dubois, H Prade, Fuzzy sets and Sytems: Theory and Applications, Mathematics in Science and Engineering.vol-144, Aczdemic Press, New York, 1980. - [3] J. Jacas, J. Recasens, Eigen vectors and generators of fuzzy relation, IEEE internat. conf. on Fuzzy systems, san Diego,1992. - [4] L.Kitainik, Fuzzy Decision Procedures with Binary Relations Theory and Applications, Kluwer Academic Publishers, Dordrecht, 1993. - [5] L. Kitainik, Fuzzy inclusion and fuzzy dichotomous decision procedures, In: J. Kacprzyk, S.A. Orlovski (Eds), Optimization Models using Fuzzy sets and possibility Theory, D. Reidel, Dordrecht, 1987, pp. 154-170. - [6] Rosenfeld, A., Fuzzy graphs. In: L.A. Zadeh, K.S. Fu and M. Shimura, Eds, Fuzzy sets and their Applications, Academic press, New York, 77-95, 1975. - [7] B. Roy, Algebre Moderne et Theorie des Graphes, Dunod, Paris, 1970. - [8] J.P. Tremblay, R. Manohar, Discrete Mathematical Structures with Applications to Computer Science, Tata McGraw-Hill Publishing Company Limited, New Delhi, 1997. - [9] L. A. Zadeh, Fuzzy sets, Inform and Control 8 (1965), 338-353. ********