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ABSTRACT 

Let R  be a ring and M  be an R -module. M  is called cofinitely weak Rad-supplemented module if every cofinite 
submodule of M  has a weak Rad-supplement in .M  If every cofinite submodule of M  has ample weak Rad-
supplements in ,M  then M  is called amply cofinitely weak Rad-supplemented module. In this paper we study some 
properties of such type of modules.  
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1. INTRODUCTION                                                                                                                
 
Throughout this paper all rings are associative rings with identity and all modules are unital left R -modules. Let R  be 
a ring and M  be an R -module. The notation N M⊆ means that N  is a submodule of .M  A submodule K  of an 
R -module M  is called small in M  (denoted by K M ) if K L M+ = for any submodule L  of M implies 

,L M= see [1]. RadM  indicates the Jacobson radical of .M  A module M  is called semi-hollow if every finitely 
generated proper submodule is small in ,M or ,RadM M= see [2]. Let M  be an R -module and A  and B  be any 
submodules of M . B  is called a supplement of A  in M  if B  is minimal with respect to M A B= + . B  is a 
supplement of A  in M  iff M A B= +  and A B B  , (see [2] 20.1). M  is called supplemented if every 
submodule of M  has a supplement in .M  Artinian and semisimple modules are supplemented modules. For A M⊆ , a 
submodule B  of M  is called a weak supplement of A  in M  if A B M+ =  and A B M  (see [12], 1.3). An R -
module M  is called weakly supplemented if every submodule of M  has a weak supplement in M . Clearly 
supplemented modules are weakly supplemented. Artinian, semisimple and hollow modules are weakly supplemented 
modules. 
          
A submodule K  of a module M  is said to be cofinite if the factor module /M K  is finitely generated. If every 
cofinite submodule of M  has a supplement in M  then M  is called a cofinitely supplemented module, see [3]. An R
-module M  is called a cofinitely weak supplemented module (or briefly a cws-module) if every cofinite submodule   
has a weak supplement. Clearly cofinitely supplemented module and weakly supplemented module are cofinitely weak 
supplemented and a finitely generated module is weakly supplemented iff it is a cws-module. Cofinitely weak 
supplemented module need not be cofinitely supplemented. For example, consider the ring 

( ) ( ), { : , , 0, , 1, , 1},p qR Z a b a b Z b p b q b= = ∈ ≠ = =  the left module R R is cofinitely weak supplemented but is not 
cofinitely supplemented; see [4, remark 3.3]. 
 
Let M  be an R -module and let U  be a submodule of .M  A submodule V  of M  is called a Rad-supplemented of 
U  in M  (according to [5], generalized supplement) if U V M+ = and .U V RadV⊆ An R -module M  is called 
Rad-supplemented (according to [5], generalized supplemented or a GS-module) if every submodule of M  has a Rad-
supplement in .M  A submodule V  of M  is called a weak Rad-supplement of U  in M  if U V M+ = and 

.U V RadM⊆ An R -module M  is called weakly Rad-supplemented (according to [5], generalized weakly 
supplemented or a WGS-module) if every submodule of M  has a weak Rad-supplement in .M  The Z -moduleQ  is 
Rad-supplemented as well as weak Rad-supplemented modules but the Z -moduleQ  is not supplemented. Let M  be 
an R -module. If every cofinite submodule of M  has a Rad-supplement in M  then M  is called a cofinitely Rad-
supplemented module.  
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Let M  be an R -module and [ ],N Mσ∈ subcategory of left R -modules subgenerated by .M  A projective module 
P  in [ ]Mσ together with a small epimorphism : P Nπ → is called a projective cover of N in [ ].Mσ A module N  
in [ ]Mσ is called semiperfect in [ ]Mσ if every factor module of N has a projective cover in [ ].Mσ A projective 
module in [ ]Mσ is semiperfect in [ ]Mσ if and only if it is (amply) supplemented (see [1], 42.3). 
 
2. COFINITELY WEAK RAD-SUPPLEMENTED MODULE                                       
          
In this section, we discuss the concept of cofinitely weak Rad-supplemented modules and give some properties of such 
type of modules. 
 
Definition 2.1. Let M  be an R -module. M  is called a cofinitely weak Rad-supplemented module if every cofinite 
submodule of M  has a weak Rad-supplement in .M  
 
Lemma 2.2. Let M  be an R -module and V  be a weak Rad-supplement of U  in .M Then ( ) /V L L+  is a weak 

Rad-supplement of /U L  in /M L for every submodule L of .U  
 
Proof: See [6, Lemma II. 1] 
 
Theorem 2.3. Let M  be an R -module and N  be a nonzero semi-hollow submodule of .M  Then M  is cofinitely 
weak Rad-supplemented iff /M N  is cofinitely weak Rad-supplemented. 
 
Proof: Let M  be a cofinitely weak Rad-supplemented module. Let U  be a submodule of M  and N  is a nonzero 
semi-hollow submodule of .M  Consider /U N  is a cofinite submodule of / ,M N  then U  is cofinite. Since M  is 
cofinitely weak Rad-supplemented module, then there is a submodule V  of M  such that U V M+ = with  

.U V RadM⊆  By lemma 2.2, ( ) /V N N+ is a weak Rad-supplement of /U N  in / .M N  Hence /M N is 
cofinitely weak Rad-supplemented. 
 
Conversely, Let U  be a cofinite submodule of .M  Then ( ) /U N N+  is a cofinite submodule of / .M N  Since 

/M N  is cofinitely weak Rad-supplemented, ( ) /U N N+ has a weak Rad-supplement in / .M N  Suppose /V N  is 

weak Rad-supplement of ( ) /U N N+  in / .M N Then / ( ) / /V N U N N M N+ + =  ⇒  ( ) / /U V N M N+ = ⇒

U V M+ = and / ( ) / ( / )V N U V N Rad M N+ ⊆ ⇒ ( ) / /U V N RadM RadN⊆ ⇒ ( ) / /U V N RadM N⊆  
(since N  is semi-hollow module, so RadN N= ) .U V RadM⇒ ⊆  Hence M  is a cofinitely weak Rad-
supplemented. 
 
Proposition 2.4. Suppose that M  be a cofinitely weak Rad-supplemented module and N  be a submodule with 

.RadM N⊆  If ( ) { },Rad M N N= then every cofinite submodule of /M N  is a direct summand of / .M N  
 
Proof: Let M  be a cofinitely weak Rad-supplemented module and /M N  be any factor module of .M  For N K⊆ , 

let /K N  be a cofinite submodule of / ,M N then M N
K N

 is finitely generated. Now / .M NM K
K N

≅  therefore, 

/M K  is finitely generated. Hence K  is a cofinite submodule of .M  Since M  is a cofinitely weak Rad-
supplemented module, therefore, there is a submodule V  of M  such that K V M+ =  and .K V RadM⊆

According to the lemma 2.2,  ( ) /V N N+ is  a weak Rad-supplement of  /K N  in / .M N Hence 
/ ( ) / /K N V N N M N+ + = ⇒ ( ) / /K V N M N+ = ⇒ K V M+ = and ( ) / / ( / )V N N K N Rad M N+ ⊆  

{ }.N= Since ,RadM N⊆ we know ( ){ } / / ,N V N N K N⊆ +   therefore we have ( ) { }.V N N K N N+ =  
Hence /K N  is a direct summand of / .M N  
 
Corollary 2.5. Let M  be a cofinitely weak Rad-supplemented module. Then every cofinite submodule of /M RadM  
is a direct summand of / .M RadM  
 
Lemma 2.6. If :f M N→ is a homomorphism and a submodule L  of M  containing ker f is a weak Rad-
supplement in ,M  then ( )f L  is a weak Rad-supplement in ( ).f M  
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Proof: Let ,M N  be R -modules and :f M N→  be a homomorphism. If L  is a weak  Rad-supplement of K  in 

,M  then we have ( ) ( ) ( )M L K f M f L f K= + ⇒ = +  and since L K RadM⊆  we have ( ) ( )f L K f RadM⊆  
( ( )).Rad f M⊆ As ker ,f L⊆ ( ) ( ) ( )f L f K f L K=   i.e. ( ) ( ) ( ( )).f L f K Rad f M⊆  So ( )f L is a weak Rad-

supplement of ( )f K  in ( ).f M  
 
Proposition 2.7. Every homomorphic image of cofinitely weak Rad-supplemented module is a cofinitely weak Rad-
supplemented module. 
 
Proof: Suppose that :f M N→ be a homomorphism and M  be a cofinitely weak  Rad-supplemented module. Let 
K  is a cofinite submodule of ( ),f M then ( )1 1/ ( ) / ker / ( ( )) / ker ( ) / .M f K M f f K f f M K− −≅ ≅  Therefore, 

1/ ( )M f K− is finitely generated. Since M  is a cofinitely weak Rad-supplemented module, 1( )f K−  is a weak Rad-

supplemented module in M  and according to the lemma 2.6, 1( ( ))K f f K−=  is a weak Rad-supplement in ( ).f M  
 
Corollary 2.8. Any factor module of a cofinitely weak Rad-supplemented module is a cofinitely weak Rad-
supplemented module. 
 
3. AMPLY COFINITELY WEAK RAD-SUPPLEMENTED MODULES 
 
In this section, we show the concept of amply cofinitely weak Rad-supplemented modules and give some properties of 
such type of modules. 
 
Definition 3.1. Let M  be an R -module. If every cofinite submodule of M  has ample weak Rad-supplements in M  
then M  is called amply cofinitely weak Rad-supplemented module. 
 
Proposition 3.2. Every factor module of an amply cofinitely weak Rad-supplemented module is amply cofinitely weak 
Rad-supplemented. 
 
Proof: Let M  be an amply cofinitely weak Rad-supplemented module. For ,A X M⊆ ⊆  let M / A be any factor 

module of M  and /X A  be a cofinite submodule of / ,M A  then M A
X A

  is finitely generated. Now / ,M AM X
X A

≅

/M X is also finitely generated. Hence X  is a cofinite submodule of .M  Suppose / / /X A Y A M A+ = for some 
submodule /Y A  of / ,M A  then .X Y M+ =  Since X  is cofinite and M  is amply cofinitely weak Rad-
supplemented, there is a submodule B  of Y  such that B  is a weak Rad-supplement of X  in .M  By lemma 2.2, 
( ) /B A A+  is a weak Rad-supplement of /X A  in / .M A  Clearly ( ) / / .B A A Y A+ ⊆  Hence /M A  is amply 
cofinitely weak Rad-supplemented. 
 
Corollary 3.3. Every homomorphic image of an amply cofinitely weak Rad-supplemented module is amply cofinitely 
weak Rad-supplemented. 
 
Proof: Let M  be an amply cofinitely weak Rad-supplemented module. Since every homomorphic image of M  is 
isomorphic to a factor module of ,M  then by proposition 3.2, every homomorphic image of M  is amply cofinitely 
weak Rad-supplemented. 
 
The R -module M  is called π -projective, if for every submodules U  and V  with M U V= + there exists a 
homomorphism :f M M→ such that Im f U⊆ and Im(1 )f V− ⊆ [see, 2]. 
 
Proposition 3.4. Let M  be a cofinitely weak Rad-supplemented and π -projective module. Then M  is amply 
cofinitely weak Rad-supplemented. 
 
Proof: Let A  be a cofinite submodule of M and A B M+ = for any submodule B  of .M  Since M  is cofinitely 
weakly Rad-supplemented and A  is a cofinite submodule of ,M there exists a weak Rad-supplement T  of A  in .M  
Since M  is π -projective, there exists an homomorphism :f M M→ such that Im f B⊆ and Im(1 ) .f A− ⊆  Then 
we can show ( )f A A⊆  and (1 )( ) .f B B− ⊆  In this case   
 

( ) (1 )( ) ( ) ( ) ( ) ( ).M f M f M A f A T A f A f T A f T= + − = + + = + + = +  
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Let ( ).a A f T∈ + Then there exists t T∈ with ( ).a f t=  This case ( ) (1 )( )t a t f t f t A− = − = − ∈  and  then .t A∈

Hence t A T∈  and ( ) ( ).A f T f A T⊆   By the Hypothesis, since A T RadM⊆ so ( )( ) .f A T f RadM⊆

( ) ( ) ( ) ( ( )) .A f T f A T f RadM Rad f M RadM⊆ ⊆ ⊆ ⊆  Hence ( )f T  is a weak Rad-supplement of A  in .M  
Since ( ) ,f T B⊆ A  has ample weak Rad-supplements in .M  Thus M is amply cofinitely weak Rad-supplemented. 
 
Corollary 3.5. Every projective and cofinitely weak Rad-supplemented module is amply cofinitely weak Rad-
supplemented. 
 
Proof: We can show that every projective module is π -projective module. Now by the proposition 3.4, every 
projective and cofinitely weak Rad-supplemented module is amply cofinitely weak Rad-supplemented. 
 
Lemma 3.6. Let M  be an R -module with small radical and .A M⊆  If A  has a weak Rad-supplement that is a 
supplement in ,M  then A  has a supplement in .M  
 
Proof: Let B  be a weak Rad-supplement of A  in ,M  then A B RadM M⊆  and so .A B M   Since B  is a 
supplement in ,M  .A B B  Hence B  is a supplement of A  in .M  
 
Theorem 3.7. Let M  be an R -module with small radical. If M  is amply cofinitely weak Rad-supplemented such 
that weak Rad-supplements are supplements in ,M then M  is amply cofinitely supplemented. 
 
Proof: For proof see lemma 3.6. 
 
Corollary 3.8 Let R  be any ring. If the R -module R  is weak Rad-supplemented such that weak Rad-supplements 
are supplements in ,R  then R  is semiperfect. 
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