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ABSTRACT

In this paper we obtain some extensions and generalizations of a well known theorem due to Enestrom and Kakeya.
We obtain all the zeros of polynomial P(2)= X§ a; 7/ satisfying certain restrictions on real as well as imaginary

coefficients of complex number a; =(o;, £;) lying W|th|n the disk R* <|z-z),| <R, z, (an arbitrary point) is the
centre of the disk in the complex plane.
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INTRODUCTION

The following result due to Enestrom&Kakeya [12] is well known in the theory of distribution of zeros of polynomials.
Theorem A (1): If P (2) =X0 q; 7/ be a polynomial of degree n such that

an>ang > an2>... ... >a; >a,>0, ajeR 1)
Then P(z) does not vanish in |z|>1

This is a very elegant result but it is equally limited in scope as the hypothesis is very restrictive.

In the literature [1-10], [13-15], diverse attempts have been made for generalizing the Enestrom-Kakeya theorem to
polynomials and analytic functions.

A. Joyal et al [11] extended this theorem to the polynomials whose coefficient are monotonic but not necessarily non
negative and proved the following:

Theorem A (2):

IfP(2) =20 q z/ be a polynomial of degree n such that
Ay > ap.1 > app>.....>a1 28 |, aje R

Then all the zeros of P(z) lie in

|z| < (an — a0 + | &) + [ |- )
This was further improved upon by Dewan & Govil[7].

Aziz and Zargar[1] relaxed the hypothesis of Theorem A(1) and proved the following result.

Theorem B: Let P(z) =}0 q; 7/ be a polynomial of degree n with complex coefficients such that for some k>1,

kan D P a1230>0
then all the zeros of P(z) lie in |z+k-1]| <k (3)
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Shah & Liman [15] also proved the following extensions of Enestrom-Kakeya theorem
Theorem C: Let P (2) =X( q; 7/ be a polynomial of degree n with complex coefficients. If
Re(a;) =a; and Im(a;) = B;, for j -0,1,2-----n. such that for some 2> 1,

Al > Oy = O ... >0 > 0

Bn > Bn-i= Pra > >B1=Po>0
Then all the zeroes of P(z) lie in

|z + 52 (A -1)| < [Aan - oo+ [ao| +8, ]+ | &l o

an

Theorem D: Let P(z) =X5 a; z/ be a polynomial of degree n with complex coefficients. If Re (a)) =o; and Im(g;) - p;, for
j =0,1,2-----n. such that for some k> 1,

Ay < Oy Zoenns SAp 4 S 0p2a, 12 > 04 > 0p

p p—1Zeeens
Bn = Pn1= P2 B> Po>0

where 0 < p <n-1, then all the zeros of P(z) lie in
2+ 22 (L -D)] < [20p - Moty - otp Haol + £, ]+ | @ ®)
Recently, Choo[5] has proved the following theorem

Theorem E: Let P(z) =X5 a; Z be a polynomial of degree n with complex coefficients. If Re (a)) =o; and Im(ay) - p;, for
j =0,1,2-----n. such that for some p and r and for some A, >0

Aoy < Opg <...... Stpyq S Ap2ap 12 >0 > 0g
uBnS Bn—li ------ S.Br+1 S.Brz.gr—l2 ----- Z Blz BO

then P(z) has all its zeros in Ry < |z ‘S R, where

M

R1:I;I—O|and R2:
1

lan|

with
M = |an| + |(l - l)anl +|(# - 1)ﬁn| + 2(C¥p + .Br) - (}‘an—i_uﬁn) - (aO + .BO)

and
MZ: |(/1 - 1)an| +|(,Ll - 1)Bn| + 2(ap + ﬁr) - ()"an—i_uﬁn) - (6‘[0 + ﬁO) + |a0|
Here we notice that the annulus Ry < |z ‘ <R, is expressed in terms of X and p as associated to the coefficients a,and

B, in the given constraint in Theorem E . In our investigation we are able to associate these parameters A and p to the
centre of the disk and obtain sharper bound in the general standard form as given below:

Theorem 1: Let P(2) =33 a; z/ be a polynomial of degree n with complex coefficients. If Re (gj) =o; and Im(a;) = ;.
for j -0,1,2----- n. such that for some A, p>1,

(6)
where 0 <p, g <n-1, then all the zeros of P(z) lie in the disk

RML < |Z_Z7\p| < RML ’ (7)
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where
23, = _[(A—aln)an +i (#—aln)ﬁn] , (8a)
1
Ry = rl2(@y + B @y +1B,)- (a0 + Bo)*lao| (8b)
R = O - D2, (= 128,12 (8c)

lan [+ =D ey |+ (w=1)Bn |+2(op + Ba)—(hom +1B,, )~ (00 +8 ) "l

Proof: Consider the polynomial

F(2) = (1-2)P(2) = -an 2™ +(ay — 8pqy2" +------- +(a1-a)+ao
=[-0.z™ +a,-a 2"+ (0 o)zt ag] + i[-Bnz " (Ba= B )2 Feee + (B1- Bo)z+Po]
= [-onz m (& n =Aon)+( Aoy - o n-l)]Zn +( 01~ O p)Z SR + (01~ 0lg)Z+ alg]

+i[-B, z m +[( Bn —HBny +( 1PBn- B n-l)]Zn +( Pnr- P n2)Z SRR + (B1- Bo)z+Po]

= -2"{( o n+iPr)ZH (A1) @y +Hi(p-1) B HI( Aoty - 0nt)Z" +( Opg- O p)Z " oemmeee + (04 ao)Z H[( By - B,_,)7"
+ (Br1 B a2 )2+ (Bi- Bo)z] + (0o +iBo)

Now if [z]>1, —=<1, j=0,1,2---n-1
Therefore,
n n | ! | “Ap-11, 17 Gp-21,
F@)1 2 21 ot )t 1) ) = (] Ay o]+ Kootz vty | ot | Jo 2l
la1—ag | |Bn—1—Bn—2 | |Bq+1-Bq | |B¢=Bq-1| , 1Bg—1=Bq- z| 1B1=Bol , laol
an + o Boal + |z T * |z|n—a=1 ¥ lz|n—q * |zttt * |z|n—1 +W}
= [z]" {lanz+(A-1)ay +i(u-1) By [} = {20 = Aot — co+[ao[+2Bg-1Pn - Bo}
>0, if
A-Dan |, (u—1)Bn 1
|2+ C2 4 DR > (20 Bo)-( Ao W) agtBo ) +laol }
This shows that the zeros of F (z) having modulus greater than 1 lie in
A—1)ay +i(u—1)8n
o + ERE R | < 20 B)-Oun s 1B, )-( o By Haol } ©)

Since all the zeros of P (z) with modulus greater than 1 lie in the disc given by equ. (9), it can be shown that R;, > 1.
Consequently the zeros of P (z) with modulus less than or equal to one are already contained in the disk

|z-2:,] <Ry, (10)
In order to prove the lower bound R™ < |z-z,,| we first prove the following lemma.

Lemma: Let P (2) =X( q; z/ be a polynomial of degree n with complex coefficients. Then for |z|<1,

lagl _ lag|
We show that [2] < 0 = T e TG DA 720y 7 5a)—Cran o5, )—(0 750 )

Proof: Let |z|<1.
Consider F(2) = (1-2)P(2) = -a, 2™ +(a, — ay1)2" +------ +(as-ap)+ap
n+l

Z-an 2™ (g = ozt (o= ag)zt o] + i[-Bnz ™ H(Ba— P ar)Z" +.... + (B1- Bo)z+Pol

= -2"{( o n HiB)Z (A1)t Hi(p-1) B, 3 Aty - 0-1) 2" +H( s ta2)Z Lt (0 00)Z]
HI( BB - By )Z"+ (Boa- Bn2)z™ +...ot(Br- Bo)Z] + (00 +iPo)

=V (2) +a (112)
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P(2) = agz+(A-1) ey +i(p-1)B, + [( Aoy - 051)2" +(01- 0. Z)Z ------ + (0= 00)Z +Hi[ (kB - Bn_l)zn+ (Bra- Bn2)z "
+o + (B1- Bo) 2]

~ | P(2)| = [anz+ (1) e, +i(u-1) By +[( Aot - 00.1)Z" +( 01 O 2)2 ------ Hou- ap) Z H[( 1By - Bn_l)zn +(Bra- B n2)z "
------ + (B Bo) 2l

< [anz+(A-1) e, +i(p-1) B, | +I[( Aoty - 0.1) +(0n-1- Opg) +.o H(ag- a) I 1Bn - B, _ ) +(Bna- Bna) +ovenne
+(B1- Bo)] |

< lanz+ (-1 ay, +Hi(u-1)Ba+{20p — han — ao+2Bg-pfn - Bo}
<lazt (-Da, +Hi(u-1)B,] +My,
< lanzft|(A-1)ay, [+(u-1)B, | +IMy
where My =20, — Aoy — 0l t2Bg- UPn - Bo (12)
Since ¥ (0) =0, it follows by Schwarz lemma that
¥ (2) | £ Myz| for |z|<1
Therefore for |z|<1,
|F@)| = [¥(2)+a0|> |aol-[¥(2)I= [aol- | anz|-|(A-1)ety | — [(u-1)By, | - Mufz |
>0, if
laol = | anz[+|(A-1) ey | +|(1-1)B,| + Mufz|

[A=Dayn | +(=1)Bn| ]

2]

2 [2I[ lanl+ My

> [zl(janl+(A-1) e, |+H(u-1)B, [+ M)

> [z|M,,
where Mz = ([ag[+|(A-1)a,, [+[(1-1) B, [H2(0pt By )-( Ao + 1Pn)-( aot o)) (13)
Thus, [z] < '30' = 12| (14)

lan [+ (v=1)ay [+ (w=1)Bn |+2(ap + Ba)—(hom +uB,, )~ (00 +B )

Hence P(z) does not vanish in |z] < 2ol "yt can be shown that M, < |ao| so that |z|<1. Hence P(z) has all its zeros in
M;
lagl
< (15)
Now we prove the second part of the main theorem (1)

Since -2, 12 2| |23 | (16)

then using eq(15) of above lemma in eq(16), we have
Iaol

|Z Z)»u | Z |Z | |ZML | v |ZML |
This implies 'M"' 20 | < 12 - 23, |
lagl | (A=Dan , : @=1fn
4ol _ + <l|7 -
w, |, HiT T Sl 17)
From above eq(17) we obtain R™ < |z-z,,], (18)

where R™ is given in equation 8(c)
On combining equ. (10) and equ.(18) the above theorem is completely proved.
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Remark 1: The bound given by eq(7) shows that the arbitrary constants A and p associated to coefficients a, and f3,
have the dependence on the centre (arbitrary ) of the disc. We note that this bound coincides with the annulus
corresponding to L = p =1 given in Theorem E. However concentric circles in Theorem E, centred at the origin do not
have the dependence on A and p.

Remark 2: Further we note with regard to the upper bound of above Theorem 1 given as |z-z;,| <R, ,

where

A-Dan i (1—1)Bn - A+iB, where A = — A-Dan and B = — (u—1)Bn

an an an an

and Ry, = 120, + By)-(h an +uBa)- (a0 + Bo)Haol

ZML =—

and that if we transfer the centre of the above disk to the disk at the origin so that eq(9) can be written as:

|Z| = | Z—= Zy + ZMJ. | < ‘Z'ZMJ +|Z7up|
<R+ 7l
< 1 (200 + B)-( Aty B, )-( 0oy Haol] + VAZ + B (19)
Comparing this bound with upper bound of Theorem E given by:
2<R=
1
< |0-n|{ I(/1 - 1)an| +|(,Ll - 1)Bn| + Z(ap + Br) - (anﬂlﬁn) - (6‘[0 + ﬁO) + |a0|}
1
< 1 (200 4 B)-( hatye 1B, )-( cto+By)+laol 1 + |A] + B (20)

We here find that the present bound given by (19) is sharper than (20) of Choo[5], in view of VA2 + B? < A+B.

Theorem 2: Let P(z) =X q; 7/ be a polynomial of degree n with complex coefficients such that for some &1, 0<t<I
Aap < ap.q <------ < Apn< ap > ap.q >---->a1> 19

where 0 <p <n-1, then all the zeros of P(z) lie in

2ap—2 ap+2lagl—t(ag+laol)

lan|

| z+A-1| <

(21)

Proof: Consider a polynomial
F(2) = (1-2)P(2) = -z "™ + (@ — 01)2" +----+(as-20) 2+

Let |z>1 so that——<1,j=0,1,---n-1

1
|z|n=J
“|F @)= -az ™" + (an — 8.1)2" +-----+(a1-80) 2+ |

= [-anz "™ + [(an — Aan)+( Aag -8n.1)]2" +-----+[(a1-1a0)+( Tag- ag)]z+4o |

|z [n |an -1 an—a| lap+1—apl , lap—ap-il lai—tap| |rag—aol , laol
2 1.z P {lanzt(A-1)an | Al hag -@n [ === 4ot Do+ = A S T )

n lan—1—an—2| lap+1—apl | lap—ap-1l lai—1ag| , |1=tllag| | |agl
2| Zl {lanZ+( X'l)an | {| >\-an 'an-1|+ izl +...+ |Z|"_p_1 + I +... + |z|”_1 + " |n—1 W }

S F @12 2" {lanllz+A-1 [ {ans - A+ ay_p — ay_g .t @, — apyq + @, —a,_g + o+ ag-tagt (1-1)[ag| +Hlag}

> | {lanllz+A-1 |{- han + 2 @, — ao+ (1-1)|ag| +lao[}
> |zl " {lanllzt-1 |{- han + 2 @, — 1(ao+ |agl) +2lapl} >0,
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2ap—Aay—t(ag+lagl)+2]ag|

If, [z+a-1]>

lan|
This shows that the zeros of F(z) having modulus greater than 1 lie in the disk

2ap—Aan—t(ag+|ag)+2lag|

|z+A-1 | <

lan|

But the zeros of F(z) of modulus not greater than 1 already satisfy (21) and therefore all the zeros of F(z) lie in the disk
|Z+)\‘_1 |< 2ap—Aan—t(ap+|ag+2]aol

lan|

. Since the zeros of P (z) are also the zeros of F(z), Theorem 2 is proved completely.

Note: Here when t =1 and A= 2= | we notice that Theorem 4 of Aziz & Zargar[1] turns out to be a special case of the

an

bound given by eq(21).

Corollory 1. Let P (2) =X¢ a; 7/ be a polynomial of degree n with complex coefficients such that for some 0<X<1, 0< 1
<1

Aap<api=<...... < ap+1§ ap > ap-1 Z i >a,=> T4y

where 0<p <n-1, then all the zeros of P(z) lie in
| 7 - (1-?»)| < 2ap—2A ap+2|ag|-t(ag+lagl)

(22)

lan|
Here we omit the proof of the above cor.1 since it is on the similar lines as given by Theorem 2.

We notice here that if Re(g;) =o; and Im(a; ) = Bj =0, then the result given by Theorem 2 in Gulzar[6] is a particular
case of the general bound given by eq(22).

Theorem 3: LetP (z) =X a; Z/ be a polynomial of degree n with complex coefficients such that for some m A>1,
0<t<1

then all the zeros of P(z) lie in
-1 < Bnr@otaoD+Ziaol o

lan|
Proof: Consider a polynomial
F(2) = (1-2)P(2) = -a,z ™™ + (& — An1)2" +-----+(1-80) 2+

Let |z]>1 so that —— < 1, j = 0,1,---n-1

[z~

SF@) = ez ™+ (@ — aga)2" +----+(ag-a0)2+y |
= [-az ™" + [(8n — Aan)*+( A8y -8n.1)]2" +-----+[(a1-180)+ (ta0. 8g)]Z+3p |

‘n lan—1—an—2| lap+1i—apl | lap—ap—1l lag—7ag| , |1-tllag lag|
Z-Z {lanZ+O\'-1)al’1 ‘-{l)‘an 'an—1‘+ 2| ot |Z|n—p—1 + |z|n—P oot |Z|n—1 + |Z|n—1 + |z|"

>[z| " {Janllz+ A -1 |-{ Ay — @nav Qg — Apop + o+ Apyg — @y + @, — @, g+t ag — 1A +
(1 = Dlacl+laol}

>z[" {Janllz+ A -1 |-{ Aay - Tag + (1 — 1)[agl+laol}
>0, if

|Z+}\,'1 | > hap—t(ag+lagl)+2lagl
lan|
This shows that the zeros of F(z) having modulus greater than 1 lie in the disk

Aap —t(ap+lag)+2]agl

lan|

[z+ A-1|<
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It can also be verified that the zeros of F(z) whose modulus is less than or equal to one also lie in the disk defined by
equation(23) and therefore all the zeros of P(z) lying in the disc given by equation(23)

Hence above theorem is proved.

Corollary:
() Ift=1, we get|z+ L -1|<

Aap —ag+lag|

] which coincides with the result given by Aziz & Zargar [1]
(if) If t=1and if all 3;’s>0, then |z+A-1| < A which coincides with the result Aziz & Zargar [1].
(iii) If T =A=1 and if all a;’s >0, then |z | < 1 which coincides with Theorem A.
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