Research Journal of Pure Algebra -2(11), 2012, Page: 344-349 Available online through www.rjpa.info ISSN 2248-9037

GRAPH THEORETICAL REPRESENTATION OF KNOT SYMMETRIC ALGEBRA

*M. KAMARAJ and **R. MANGAYARKARASI

*Government Arts College, Melur-625 106, Maduraidt, Tamilnadu, India **E. M. G. Yadava Women's college, Madurai 625 014, Tamilnadu, India

(Received on: 25-10-11; Revised & Accepted on: 22-11-12)

ABSTRACT

In this paper we introduce Graph theoretical representation of Knot symmetric Algebra.

INTRODUCTION

In [Br], Brauer algebra was introduced by Richard Brauer (1937) in connection with the finding irreducible representation of the orthogonal group. Generators of Brauer algebra were represented by a graph with 2n vertices arranged in two rows such that each row contains n vertices. In [KM], we introduced a new class of algebras which are known as Knot symmetric algebras. Brauerdiagram (graph) motivated as to represent every generator of Knot symmetric algebras as a special type of graph which we call them as Knot graphs.

1. PRELIMINARIES

Brauer algebras 1.1. For $k \in Z$ and $x \in C$, the Brauer algebra $B_k(x)$ is the algebra over C whose basis consists of all diagrams on 2k vertices that have any combination of horizontal and vertical edges. An example of Brauer diagram is in below Fig 1

The dimension formula for $B_k(x)$ is (2k-1)!

Where (2k-1)! = (2k-1)(2k-3)....31. Multiplying Brauer diagrams introduce a parameter x which comes in to play when a loop forms in the middle rows of two diagram being multiple. A loop can be formed by two or more horizontal edges in the middle rows. When this occurs the loops disappear and we multiply the resulting diagram by x^1 where l is the number of loops in the middle rows. For example n=6 Note that horizontal and vertical edges can appear in the product of two diagrams via a sequences of edges that starts and ends with a vertical edge and which may have horizontal edges in the middle.

*Corresponding author: **R. MANGAYARKARASI **E. M. G Yadava Women's college, Madurai 625 014, Tamilnadu, India

*M. KAMARAJ and **R. MANGAYARKARASI/ Graph theoretical representation of Knot symmetric Algebra / RJPA- 2(11), Nov.-2012.

Knot symmetric algebras 1.2

Let S_n denote the symmetric group of order n. Every element of S_n can be represented as Brauer diagram (graph) with 2n vertices and with out horizontal edges [Br]. Let $\pi \in S_n$ the vertices of π are represented in two rows such that each row contains n vertices. The vertices of each row is indexed with 1, 2...., n from left to right in order. Let $E(\pi)$ denote the set of all edges of π .

(i.e) $E(\pi) = \{e_i = (i, \pi(i)); 1 \le i \le n\}$

Define $S(\pi)$ is a subset of $E(\pi) \times E(\pi)$ such that $S(\pi) = \{(e_i, e_j), i < j\}$. It is obvious that $|S(\pi)| = \frac{n(n-1)}{2}$

Example. 1 $\begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 2 & 1 \end{pmatrix} \in S_4$ is represented by fig 1

For the Fig 1

 $E(\pi)=\{e_1=(1,3), e_2=(2,4), e_3=(3,2), e_4=(4,1)\}$

 $S(\pi) = \{ (e_1, e_2), (e_1, e_3), (e_1, e_4), (e_2, e_3), (e_2, e_4), (e_3, e_4) \}$

Let f_{π} be a mapping from $S(\pi)$ to $\{-1,0,1\}$ such that

$$f_{\pi}(e_{i},e_{j}) = \begin{cases} 0 & if \ \pi(i) < \pi(j0) \\ 1 \ or - 1 \ if \ \pi(i) > \pi(j) \end{cases}$$

and $f_{\pi}(e_i, e_j) + f_{\pi}(e_j, e_i) = 0$

Knot mapping 1.3. A mapping f_{π} defined above is called a Knot mapping. Refer the above Fig 2. We have

 $e_1 = (1, 2), e_2 = (2, 3), e_3 = (3, 1)$

 $f_{\pi}(e_1,e_2)=0$, $f_{\pi}(e_1,e_3)=1$, $f_{\pi}(e_3,e_1)=-1$

Knot Number 1.4 Define $K(\pi) = \{ (e_i, e_j) \in S(\pi); \pi(i) > \pi(j) \}$

Definition 1.5 $|K(\pi)|$ is called Knot number of π . Let x be indeterminate. Define N(π)={x^mf_{π} ; m \in z, f_{π} is a Knot mapping}

For any two Knot mapping f_π and g_π .

Define $E(f_{\pi}, g_{\pi}) = \{ (e_i, e_j) \in K(\pi) : f_{\pi}(e_i, e_j) + g_{\pi}(e_i, e_j) = 0 \}$

Knot Relation 1.6 Define a relation ~ in N(π) such that $x^m f_{\pi} \sim x^l g_{\pi}$ if (i) m = l and $f_{\pi}=g_{\pi}$ or (ii) l-m =2 $\sum_{(e_i,e_j)\in E(f_{\pi},g_{\pi})} f_{\pi}(e_i,e_j)$ This relation is called Knot relation **Knot multiplication 1.7** Let $\overline{N(\pi)} = N(\pi) / \sim$ That is $\overline{N(\pi)}$ is the collection of disjoint equivalence classes with respect to the Knot relation. Define $T_n = \{(\pi, x^m f_\pi) : \pi \in S_n, f_\pi \in \overline{N(\pi)} \text{ and } mis \text{ an int } eger\}$ We define multiplication in T_n as follows:

Let a, b \in T_n and a=(π , x^mf_{π}), b=(σ , x^lg_{π}).

Define $ab = (\sigma O \pi, x^{m+1+\sigma}h_{\sigma}O_{\pi})$ where α and $h_{\sigma}O_{\pi}$ are defined as follows:

Let $(e_i, e_j) \in S(\sigma O \pi)$, $(u_i, u_j) \in S(\pi)$, $(v_p, v_q) \in S(\sigma)$, $p, q \in \{\pi(i), \pi(j)\}$, $f_{\pi}(u_i, u_j) = u$ and $g_{\pi}(v_p, v_q) = v$.

Now
$$\alpha = \sum_{(e,e_j;i)\in s(\sigma\sigma\pi)} \alpha(e_i;e_j;)$$

where $\alpha(e_i, e_j) = (u+v)|uv|$ and $h_{\sigma\sigma\sigma}(e_i, e_j) = (u+v)(1-\delta_{u,v})$ where $\delta(u, v) = \begin{cases} 0 & \text{if } u \neq v \\ 1 & \text{if } u = v \end{cases}$

Theorem 1.8. The Knot multiplication is associative in T_{n.}

Theorem 1.9. FT_n is an algebra

This algebra is called as Knot symmetric algebra

2. KNOT GRAPHS

Let S_n be the symmetric group of order n and $\pi \in S_n$. A knot graph of order n is a special graph which is defined from π as follows.

Definition 2.1 we start with an element $\pi \in S_n$, π can be represented by a graph .Consider two edges (i, $\pi(i)$) and (j, $\pi(j)$) where vertices i and j are in the upper row and i_1 and j_1 are in the lower row. If i < j, $i_1 < j_1$ then edges are as in the Brauer diagram. If i < j and $j_1 < i_1$, then we draw edges in two forms as shown below.

In form 1, we say (i, i_1) is the upper edge than (j, j_1) . In this case we may also say that (j, j_1) is lower than (i, i_1) . In form 2, we say that (j, j_1) is the upper edge than (i, i_1) . In this case we may also say that (i, i_1) is lower than (j, j_1) . The above graph is called Knot graph of order n with respect to π .

$$\frac{\operatorname{cmple}_{1: \operatorname{Knot}_{2}} \operatorname{Shoforder}_{2}}{\operatorname{Shoforder}_{2}},$$

Ex

K(π)={ (e₁,e₃),(e₂,e₃)} and $|K(\pi)|=2$ Hence number of Knot mappings of π is $2^{|K(\pi)|} = 2^2 = 4$ The four Knot mappings of π is described below:

Definition 2.2. $\pi \in S_n$, $i \le j$, $\pi(i) > \pi(j)$ we say there is a crossing and the edges are $(i, \pi(i))$ and $(j, \pi(j))$

Remark 2.3. Given $\pi \in S_n$ there are $2^{|k(\pi)|}$ Knot graphs which is equal to $\{G_i(\pi)\}$ where i=1 to are $2^{|k(\pi)|}$ **Definition 2.4.** If $G_i(\pi)$ is a Knot graph with respect to π , then π is called underlying graph of $G_i(\pi)$ **Notation 2.5.** $S_n(k)$ denote the collection of all Knot graphs

Remark 2.6. $S_1(k) = S_{1.}$

Remark 2.7. $S_2(k) \neq S_2$, For

Remark 2.8. $S_n \neq S_n(k) \forall n \ge 2$

Notation2.9. A Knot graph with π is denoted by $G_i(\pi)$, $i=1,2,\ldots,2^{K(\pi)}$ Examples of knot graphs:

When n = 4

*M. KAMARAJ and **R. MANGAYARKARASI/ Graph theoretical representation of Knot symmetric Algebra /

Notation2.10: we denote a Knot graph of order n as $G_n(\pi)$

Theorem 2.11. Every generator of Knot symmetric algebra FTn can be represented by a unique Knot graph of order n and every Knot graph of order n can be represented by a generator of Knot symmetric algebra FT_n .

That is there is a one to one correspondence between the generators of Knot symmetric algebra FT_n and the Knot Graph of order n

Proof: let (π, f_{π}) be an generator of FTn. Now $\pi \in S_n$ the vertices of π are represented in two rows such that each row contains n vertices. Let $e_i = (i, \pi(i))$ and $e_j = (j, \pi(j))$ be two edges. If i < j and $\sigma(i) > \sigma(j)$ we draw in such a way that e_i is upper than e_j if $f_{\pi}(e_i, e_j) = 1$ The diagram is refer in below **Fig 1:** Next we refer the below **Fig 2** as follows: we draw in such a way that e_j is lower than e_i with respect to f_{π} if $f_{\pi}(e_i, e_j) = -1$. The diagram of Fig 1 and Fig 2 is drawn as follows:

Thus we get a Knot graph of order n corresponding to (π, f_{π}) . Now we will prove that every Knot graph of order n represent a generator.

Let G_n be a Knot graph of order n. Now $\pi(G_n) \in S_n$ we denote π instead of $\pi(S_n)$. Define $f_{\pi}: S(\pi) \rightarrow \{-1, 0, 1\}$ as

$$f_{\pi}(e_{i},e_{j}) = \begin{cases} 0 & if \pi(i) < \pi(j) \\ 1 & if e_{i} \text{ is upper than } e_{j} \\ -1 & if e_{i} \text{ is lower than } e_{j} \end{cases}$$

It is obvious that the graph represented by (π, f_{π}) is G_n

Example. when n=4,

let
$$\pi = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 2 & 1 & 3 \end{pmatrix}$$
 and $E(\pi) = \{e_1 = (1,4), e_2 = (1,2), e_3 = (3,1), e_4 = (4,3)\}$
 $S(\pi) = \{(e_1, e_2), (e_1, e_3), (e_1, e_4), (e_2, e_3), (e_2, e_4), (e_3, e_4)\}$

© 2012, RJPA. All Rights Reserved

*M. KAMARAJ and **R. MANGAYARKARASI/ Graph theoretical representation of Knot symmetric Algebra / RJPA- 2(11), Nov.-2012.

Let f_{π} be defined as follows:

 $f_{\pi}(e_1,e_2)=1, f_{\pi}(e_1,e_3)=1, f_{\pi}(e_1,e_4)=1, f_{\pi}(e_2,e_3)=1, f_{\pi}(e_2,e_4)=0, f_{\pi}(e_3,e_4)=0.$

Now the Knot Graph represented by (π, f_{π}) is shown below: In this example the edge e_1 is upper than e_2 with respect to f_{π}

REFERENCES

[PK] M. Parvathi and M. Kamaraj signed Brauer's Algebra ,Communications in Algebra, 26(3),839-855(1998).

[Br] R. Brauer, algebras which are connected with the semisimple continuous graphs, Ann of Math, 38(1937), 854-872.

[W] H. Wenzl on the structure of Brauer's centralizer algebras, Ann of math (128) (1988), 173-193.

[PS] M. Parvathi and C. Selvarajsigned Brauer's algebras as centralizer algebras, communication in algbra 2 7(12) 5985 -5998(1999).

[KM] M. Kamarajand R. Mangayarkarasi, Knot Symmetric Algebras, Research journal of pure algebra-1(6) (2011), 141-151.

[RBA] The Rook Brauer Algebra Elise G.delmas "The Rook" (2012). Honors project paper 26, Macalester College, <u>edelmas@macalester.edu</u>.

Source of support: Nil, Conflict of interest: None Declared