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ABSTRACT 
In this paper Fixed point results and menger probabilistic metric space for multivalued maps. 
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INTRODUCTION 
The probabilistic metric spaces is an important part of Stochastic Analysis, to develop the fixed point theory in such 
spaces. There are many results in fixed point theory in probablisitc metric space. Metric spaces were introduced by 
Gahler in 1964, and since then there have been many fixed point theorems proved in metric spaces and as a 
generalization of metric spaces, there have been only a few results in fixed point theory. 
 
A coincidence point theorem for multivalued mappings satisfying generalized Hicks’ contraction principle in Menger 
spaces. A probabilistic metric space is introduced by Menger. Many fixed point results have been obtained for single 
valued in probabilistic metric spaces. Fixed point theorem is proved for multi-valued version of the strict probabilistic 
(bn)-contractions by Mihet. Hadzic introduced the notion of a multi-valued probabilistic ψ-contraction and by using the 
notion of the function of non compactness, a fixed point theorem was proved. Radu in generalized C-contraction which 
was presented by Hicks. A multi-valued generalization of the notion of a C-contraction and fixed point theorem are 
introduced in. Hadzic generalized fixed point theorem for multi-valued in. Zikic proved a coincidence point theorem 
for three mappings, which is a generalization of Hicks theorem. 
 
2. PRELIMINARIES 
2.1 Definition: [18] A t-norm is a function ∆: [0, 1] × [0, 1] → [0, 1] which satisfies the following conditions. 
i)    ∆(1, a) = a 
ii)   ∆(a, b) = ∆(b, a) 
iii)  ∆(c, d) ≥ ∆ (a, b) whenever c ≥ a and d ≥ b, 
iv)  ∆ (∆(a, b), c) = ∆(a, ∆(b, c)) 
 
2.2 Definition: [18] A mapping F: R → R+ is called a distribution function if it is non-decreasing and left continuous 
with ( ) ( ) 1tFsup0tFinf

RtRt
==

∈∈
, where R is the set of real numbers and R+ denotes the set of non-negative real 

numbers. 
 
2.3 Definition: Menger Space [18] A Menger space is a triplet (M. F, ∆) where M is a non empty set, F is a function 
defined on M × M to the set of distribution functions and ∆ is a t-norm, such that the following are satisfied. 
i)    Fxy (0) = 0 for all x, y ∈ M, 
ii)   Fxy(s) = 1 for all s > 0 and x, y ∈ M if and only if x = y 
iii)  Fxy(s) = Fyx(s) for all x, y ∈ M, s > 0 and 
iv)  Fxy(u+v) ≥ ∆ (Fxz(u), Fxy (v)) for all u, v ≥ 0 and x, y, z ∈ M. 
 
A sequence {xn} ⊂ M converges to some point x ∈ M if for given ε ∈ M if for given ∈ > 0, > 0 we can find a positive 
integer Nε,λ such that for all n > Nε,λ. 
 
 ( ) λ1εF xxn

−>  
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Fixed point theory in Menger spaces is a developed branch of mathematics. Sehgal and Bharucha-Reid first introduced 
the contraction mapping principle in probabilistic metric spaces. [Hadzic and Pap]. 
 
2.4 Definition: (Cauchy sequence) A sequence {xn} in a Menger space (M, F,∆) is called a Cauchy sequence if for 
each E ∈ (0.1) and t > 0. There exists η0 ∈ N such that Fxn, xm (t) > 1 - ∈ for all m, n ≥ η0. The Menger space (M, F, ∆) 
is said to be complete if every cauchy sequence in M convergent. 
 
Lemma 2.1: Let X be a metric space and (x, F, ∆) be a Menger probabilistic metric space with metric d and let w be w-
distance, t-norm in ∆, on x. Let {xn} and {yn} be a sequence in X. Let {αn} and {βn} be sequences in [0, ∞) converging 
to 0, and let x, y, z ∈ X Then, the following hold:  
a)   If w(xn, y) ≤ αn and  w(xn, z) ≤ βn for any n ∈ N, then y = z; in particular, if w(x, y) = 0 and w(x, z) = 0, then y = z; 
b)   If w(xn, yn) ≤ αn and w(xn, z) ≤ βn for any n ∈ N, then {yn} converges to z; 
c)   If w(xn, xm) ≤ αn for any n, m ∈N with m > n, then {xn} is a  cauchy sequence; 
d)  If w (y, xn) ≤ αn for any n ∈ N, then {xn} is a cauchy sequence. 
 
Theorem: Let (X, F, ∆) be a Menger probabilistic metric space with the t-norm ∆ satisfying the condition: 
 
 ( ) 1tt,Δsup

1t
=

<
                                                                                                                                              (2.1) 

 
For any α ∈ (0, 1], we define dα : X × X → R+ as follows: 
  
 dα (x, y) = inf {t > 0: Fx,y (t) > 1 - α}.                                                                                                   (2.2) 
 
Then {x, dα : α ∈ (0, 1)) is a generating space of quasi metric family;                                                                      (2.3) 
 
The topology τ{dα} on (x, dα : α ∈ (0, 1]) coincides with the (ε,λ) – topology τ on (X, F,∆) 
 
3. MAIN RESULTS 
In this section, we consider X complete and M is a non empty closed subset of X. 
 
Theorem: 3.1 Let (×, M, ∆) be complete menger probabilistic metric space with the t-norm let T: M → cl(M) be a 
multivalued kw – map such that 
 

( ) ( ) ( ){ }TtX,x:α1xαt,x,Mαu,x,M:0tInf ww ∈∈−>+>  
 
For every u ∈ X with u ∉ T(u) x ∈ X and α ∈ (0, 1] where 0 ≤ h < ½. Then “T” has a fixed point. 
 
Proof:  Let uo be an arbitrary element of M and u1∈ T(u0) since T is kw-map. There exists u2∈T(u1) such that 
 
 ( ) ( ) ( )α,u,uMrα,u,uMrαu,uM 21w10w21w +≤  
 
Where 1/2)[0,r∈ and consequently 

  ( ) ( )αu,uM
r1

rαu,uM 19w21w −
≤  

 
Thus we get a sequence {un} in M such that for every n ∈ N, un+1 ∈ T(un) 
 

Mw (un . un+1, α) ( )αu1,unM
r1

1
nw −




−

≤  

For some fixed point r, 0 < r < 
2
1

 

 

Put 
r1

rλ
−

=  then 0 < λ < 1 
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For m and n positive Integers m > n, we have 
 
Mw (un, um,α) ≤ Mw (un, un+1,α) + Mw (un+1, un+2,α) +………. + Mw (um-1, un,α) 
        ≤ λn Mw (u0, u1,α) 

        ( )α10w

n

u,uM
λ1

λ
−

≤  

 
Which implies that Mw (un, um α) → 0 as n → ∞ and by lemma 2.1, { un } is a Cauchy sequence. 
 
From the completeness of ×, we get that {un} converges to some V0 ∈ x. M being closed we have vo ∈ M. 
 
Let n ∈ N be fixed since {um} converges to some v0 and wM(un, .) is lower semi continuous, we have 
 

 Mw(un, v0 α) ≤ ( ) ( )αu,uM
λ1

λα.uuMinflim 10w

n

mnwn −
≤

∞→
 

 
So, as n → ∞, we have Mw (un, v0 α) → 0 
 
Assume v0 ∉ T (v0). Then by hypothesis, we have. 
 
 0 < Inf {Mw (u, v0 α) + Mw (u, t(u) α) > 1 - α, u ∈ x} 
 ≤ Inf {Mw (un, v0 α) + Mw (un, T (un)) ; > 1 - α, n ∈ N} 
 ≤ Inf { Mw (un, v0,α) + Mw (un . T(un), α) > 1 - α, : n ∈ N} 

 ≤ Inf ( ) ( )








∈−>+
−

Nnα;1α,u,uMλα,u,uM
λ1

λ
10w

n
10w

n

 

 = 0 
 
Which is impossible and hence v0 ∈ T(v0) 
 
Theorem: 3.2 Let (× . M. ∆) be complete Menger probabilistic Metric space, Each kw – map T: M → cl (M) has a fixed 
point, provided that for any iterative sequence {un} in M with un → v0 ∈ M. The sequence of real number {Mw (v0, un, 
α} converges to zero. 
 
Proof:  as in theorem 3.1. There exists a convergent iterative sequence {un} such that un → v0 ∈ M. with. 

 Mw (un v0. α) ≤  
∞→m

lim  inf Mw (un, um, α) ≤ 
λ1

λ n

−
 Mw (u0, u1, α) 

and 
 Mw (un . un+1, α) ≤ λn Mw (u0 . u1 α) : > 1 - α 

where 1
r1

rλ <
−

=  

 
Note that Mw (un . v0 . α) → 0 as n → ∞ further. Since un ∈ T(un-1) and T is a kw – map. There is vn ∈ T(V0) such that 
 
 Mw (un, vn, α) ≤ r [Mw (un-1, un, α) + Mw (v0, vn, α)] > 1 - α 
           ≤ {r ∫ Mw(un-1, un) + r Mw (v0, vn) + r Mw (un, vn) : > 1 - α} 

           ≤ 
r1

r
−

 {Mw (un-1, un, α) > 1 - α} + 
r1

r
−

 {Mw (v0, un, α) > 1 - α} 

 
And Thus Mw (un, vn α) → 0 as n → ∞ 
 
Thus by lemma 2.1 we get that V0 → V0 and since Vn ∈ T (V0) which is closed, S0 V0 ∈ T (V0) 
 
Now we prove some results on existence of common fixed points. 
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Theorem 3.3: Let (x . M. ∆) be complete Menger probabilistic metric space with t-norm and ∆ satisfying condition Let 

{Tn} be a sequence of multivalued maps of M in to cl (M) suppose that. There exists a constant 0 ≤ r < 
2
1

 such that for 

any two maps Ti, Tj ∈ {Tn} and for any x ∈ M. u ∈ Ti (x). There exists V ∈ Tj(u) for all y ∈ M with 
 
 WM (u, v, α) ≤ r {Mw (x, u, α) + Mw(x . Tn(x). α) > 1 - α : x ∈ x} > 0 
 
For any u ∉ Tn (u). Then {Tn} has a common fixed point. 
 
Proof: Let u0 be an asbitrary element of M and let u1 ∈ T1 (u0). Then these is an u2 ∈ T2 (u1) such that 

 Mw (u1, u2, α) ≤ 
r1

r
=

 Mw (u0, u1, α) 

 
So there exist a sequence {un} such that un+1 ∈ Tn+1 (u) and for all n ≥ 1. 

( ) ( )α,u,uM
r1

rα,u,uM 10w

n

1nnw 




−

≤+  

Put 
r1

rλ
−

=  Note that 0 < λ < 1 and 

 
 Mw (un. un+1, α) ≤ λn Mw (u0, u1, α) for all n ≥ 1. Then, as n → ∞, we get that {un} is a cauehy sequence in X  
 
Let nn

ulimP
∞→

=  in M. 

 
Now we show that ( )PTnP n1n≥∈ . 
 
Let Tm be an arbitrary member of {Tn}. Since un ∈ Tn (un-1). By hypothesis there is Sn ∈ Tm(P) such that. 
 
 Mw (un, sn, α) ≤ r{Mw (un -1, un, α) + Mw (P, sn . α) : > 1 - α} 
 
We proceed as in the proof of theorem 3.1 and get 
 
  ( ) ( )α,u,uMinflim.p.αuM mnwmnw ∞→

≤  

             ( )α,u,u
λ1

λ
10

n

wM
−

≤  

 
Which is converges to O as n → ∞. Now assume that P ∉ Tm(P). Then, by hypothesis and for n > m and M ≥ 1. 
 
We have 
 
            0 ≤ Inf {Mw (u . p . α) + Mw (u, Tm (u), α) > 1 - α : u ∈ x} 
 ≤ Inf {Mw (um-1, p, α) + Mw (um-1, Tm (um-1) α) > 1 - α : m ∈ N} 
 ≤ Inf {Mw (um-1, p, α) + Mw (um-1, Tm (um-1), α) > 1 - α : m ∈ N} 

 ≤ ( ) ( )








∈−>+
−

−
−

Nm:α1αu,,uMλα,u,uM
λ1

λinf 0w
1m

10w

1m

 

 
Which is impossible and hence p ∈ Tm(P). But Tm is an arbitrary hence P is a common fixed point. 
 
Theorem: 3.4: Let (X, F, ∆) be complete Menger probabilistic Metric space with the t-norm and ∆ satisfying the 
condition let {Tn} be a sequence of multivalued maps of M into cl(M). Suppose that there exists a constant r with 0 ≤ r 

2
1  and such that for any two maps Ti, Tj and for any x ∈ M, u ∈ Ti(x). There exists V ∈ Tj(u) for all 

 y ∈ M wm (u, v, α) ≤ r {Mw (x, u, α) + Mw (u, v, α) > 1 - α : x ∈ X}. 
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Then {Tn} has a common fixed point provided that any iterative sequence {un} in M with un → v0 ∈ M the sequence of 
real number {Mw (v0, un, α)} converges to zero. 
 
Proof: can be proved early in above  
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