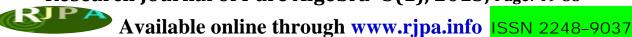
Research Journal of Pure Algebra -3(1), 2013, Page: 49-55



A COMMON FIXED POINT THEOREM FOR FOUR SELF MAPS ON A FUZZY METRIC SPACE WITH HADZIC TYPE t — NORM UNDER S-B PROPERTY

K. P. R. Sastry¹, G. A. Naidu², N. Umadevi^{3*} and R. V. Bhaskar⁴

¹8-28-8/1, Tamil Street, Chinna Waltair, Visakhapatnam-530017, India ²Department of Mathematics, Andhra university, Visakhapatnam-530003, India ³Department of Mathematics, Raghu Engineering College, Visakhapatnam-531 162, India ⁴Department of Mathematics, Raghu Engineering College, Visakhapatnam-531 162, India

(Received on: 08-01-13; Revised & Accepted on: 23-01-13)

ABSTRACT

In this paper the concept of weak compatibility in a fuzzy metric space with Hadzic type t —norm and S-B property has been applied to obtain a common fixed point theorem for four self maps on a fuzzy metric space.

Keywords: Fuzzy metric space, weak compatible maps, S-B property and Hadzic type t -norm.

Mathematical Subject Classification (2010): 47H10, 54H25.

1. INTRODUCTION

The concept of fuzzy sets was introduced by Zadeh [13] in 1965. Since then, to use this concept in topology and analysis, many authors have extensively developed the theory of fuzzy sets and its applications. Kramosil and Michalek [6] have introduced the concept of fuzzy metric spaces in different ways. In 1988, Grabiec [4] extended the fixed point theorem of Banach [1] to fuzzy metric spaces. George and Veeramani [3] have modified the concept of fuzzy metric space introduced by Kramosil and Michalek [6]. They have also shown that every metric induces a fuzzy metric. Singh et. al. [12] proved various fixed point theorems using the concepts of semi-compatibility, compatibility and implicit relations in fuzzy metric spaces. Rajinder Sharma [8] obtained a common fixed point theorem for four self maps on a fuzzy metric space with min t-norm under S-B property. Sastry et.al. [9] proved a fixed point theorem in fuzzy metric spaces with min t-norm and obtained the result in [8] as a corollary. Further, in [9] an open problem is raised regarding the validity of their result in fuzzy metric spaces with general continuous t-norm (not necessary min t-norm). In this paper, we partially answer the open problem in the affirmative by proving their common fixed point theorem in fuzzy metric spaces with Hadzic type t —norm under S-B property. However, the general solution to the open problem is still open.

Definition 1.1: (**Zadeh.L.A.** [13]) A fuzzy set *A* in a nonempty set *X* is a function with domain *X* and values in [0,1].

Definition 1.2: (Schweizer.B. and Sklar. A. [10]) A function $*:[0,1] \times [0,1] \to [0,1]$ is said to be a continuous *t*-norm if * satisfies the following conditions:

For $a, b, c, d \in [0,1]$,

- (i) * is commutative and associative
- (ii) * is continuous
- (iii) $a*1 = a \text{ for all } a \in [0,1]$
- (iv) $a * b \le c * d$ whenever $a \le c$ and $b \le d$

We observe that $a * b = \min\{a, b\}$ is a *t*-norm.

Note: $a * b = \min\{a, b\}$ is a $t - \text{norm} \Leftrightarrow t * t \ge t$. $\forall t \in [0, 1]$.

Different types of t-norms: (Schweizer.B. and Sklar. A. [10])

- (1) a * b = a.b (product *t*-norm T_n)
- (2) $a * b = \max\{a + b 1,0\}$ Lukasieswict *t*-norm

(3)
$$T(x,y) = \begin{cases} \min\{x,y\}, \text{ if } \max\{x,y\} = 1\\ 0, \text{ otherwise} \end{cases}$$

Corresponding author: N. Umadevi^{3}

³Department of Mathematics, Raghu Engineering College, Visakhapatnam-531 162, India

(4)
$$T(x,y) = \begin{cases} \min\{x,y\}, & \text{if } x+y > 1\\ 0, & \text{otherwise} \end{cases}$$

(5)
$$T^{\Delta}(x, y) = \begin{cases} \frac{xy}{2}, & \text{if } \max\{x, y\} < 1\\ xy, & \text{otherwise} \end{cases}$$

Definition 1.3: (Kramosil. I. and Michalek. J. [6]) A triple (X, M, *) is said to be a fuzzy metric space (FM space, briefly) if X is a nonempty set, * is a continuous t –norm and M is a fuzzy set on $X^2 \times [0, \infty)$ satisfying the following conditions:

For $x, y, z \in X$ and s, t > 0.

- (i) M(x, y, 0) = 0
- (ii) M(x, y, t) = 1 if and only if x = y.
- (iii) M(x, y, t) = M(y, x, t)
- (iv) $M(x, y, t) * M(y, z, s) \le M(x, z, t + s)$
- (v) $M(x, y, \cdot): [0, \infty) \rightarrow [0,1]$ is left continuous.

Then *M* is called a fuzzy metric on X.

The function M(x, y, t) denotes the degree of nearness between x and y with respect to t.

Definition 1.4: (George.A. and Veeramani.P. [3]) Let (X, M, *) be a fuzzy metric space. Then,

- (i) A sequence $\{x_n\}$ in X is said to be convergent to a point $x \in X$ if $\lim_{n\to\infty} M(x_n, x, t) = 1 \ \forall t > 0$.
- (ii) A sequence $\{x_n\}$ in X is called a Cauchy sequence if

$$\lim_{n\to\infty} M(x_{n+n}, x_n, t) = 1 \ \forall \ t > 0 \ \text{and} \ p = 1, 2, ...$$

A FM –space in which every Cauchy sequence is convergent is said to be complete.

Definition 1.5: (Singh,B. and Jain,S. [12]) Two self maps S and T of a fuzzy metric space (X, M, *) are said to be weakly compatible if they commute at their coincidence points, that is, Sx = Tx implies STx = TSx.

Definition 1.6: ([11]) Let S and T be two self mappings of a fuzzy metric space (X, M, *).

We say that S and T satisfy the property S-B if there exists a sequence $\{x_n\}$ in X such that $\lim_{n\to\infty} Sx_n = \lim_{n\to\infty} Tx_n = z$ for some $z \in X$.

In the rest of the paper, we assume that a fuzzy metric space (X, M, *) satisfies the following condition:

$$\lim_{t \to \infty} M(x, y, t) = 1 \text{ for all } x, y \in X. \tag{I}$$

Definition 1.7: (Hadzic[5]) Let * be a t -norm. For any $a \in [0,1]$, write $*^0(a) = 1$ and

$$*^{1}(a) = *(*^{0}(a), a) = *(1, a) = a$$
. In general, define $*^{n+1}(a) = *(*^{n}(a), a)$ for $n = 0, 1, 2, ...$

If $\{*^n\}$ is equicontinuous at 1, that is, given $\varepsilon > 0 \exists \delta > 0$ such that $x > 1 - \delta$ implies $*^n(x) > 1 - \varepsilon \forall n \in \mathbb{N}$, then we say that * is a Hadzic type t —norm.

We observe that min t —norm is of Hadzic type.

Rajinder Sharma [8] proved the following:

Theorem 1.8: Let (X, M, *) be a fuzzy metric space with $t * t \ge t$ for all $t \in [0,1]$ and condition (I). Let A, B, S and T be mappings of X into itself such that

- $(1.8.1) \ A(X) \subset T(X) \ and \ B(X) \subset S(X),$
- (1.8.2) (A, S) or (B, T) satisfies the property (S B),
- (1.8.3) there exists a constant $k \in (0,1)$ such that

$$M^{2p}(Ax, By, kt) \geq \min \{ M^{2p}(Sx, Ty, t), M^{q}(Sx, Ax, t), M^{q'}(Ty, By, t), M^{r}(Sx, By, t), M^{r'}(Ty, Ax, (2 - \alpha)t), M^{s}(Sx, Ax, t), M^{s'}(Ty, Ax, (2 - \alpha)t), M^{l}(Sx, By, t), M^{l'}(Ty, By, t) \}$$

for all $x, y \in X$, $\alpha \ge 0$, $\alpha \in (0,2)$, t > 0 and $0 < p, q, q', r, r', s, s', l, l' <math>\le 1$ such that

$$2p = q + q' = r + r' = s + s' = l + l'$$
.

(1.8.4) the pairs (A, S) and (B, T) are weakly compatible

(1.8.5) one of A(X), B(X), S(X) or T(X) is a closed subset of X.

Then A, B, S and T have a unique common fixed point in X.

Sastry et.al. [9] proved the following theorem 1.9 and corollary 1.10 and obtained theorem 1.8 as a corollary to corollary 1.10.

Theorem 1.9: Let (X, M, *) be a fuzzy metric space and * be min t - norm with condition (I). Let A, B, S and T be mappings of X into itself such that

- (1.9.1) $A(X) \subset T(X)$ and $B(X) \subset S(X)$, and one of A(X), B(X), S(X) or T(X) is a closed subset of X.
- (1.9.2) (B,T) satisfies the property (S-B),
- (1.9.3) there exists a constant $k \in (0,1)$ and $\alpha \in (0,2)$, such that $k < \alpha, k + \alpha < 2$ and satisfies

 $M(Ax, By, kt) \ge min\{M(Sx, Ty, t), M(Sx, Ax, t), M(Ty, By, t), M(Sx, By, \alpha t), M(Ty, Ax, (2 - \alpha)t)\} \ \forall t > 0$

(1.9.4) (A, S) and (B, T) are weakly compatible.

Then A, B, S and T have a unique common fixed point in X.

Corollary1.10: Let (X, M, *) be a fuzzy metric space and * be min t – norm with condition (I). Let A, B, S and T be mappings of X into itself such that

- $(1.10.1) A(X) \subset T(X)$ and $B(X) \subset S(X)$, and one of A(X), B(X), S(X) or T(X) is a closed subset of X.
- (1.10.2) (B,T) satisfies the property (S-B),
- (1.10.3) there exists a constant $k \in (0,1)$, $\mu > 0$ and $\alpha \in (0,2)$, such that $k < \alpha$, $k + \alpha < 2$, satisfying

 $M^{\mu}(Ax, By, kt) \ge min\{M^{\mu}(Sx, Ty, t), M^{\mu}(Sx, Ax, t), M^{\mu}(Ty, By, t), M^{\mu}(Sx, By, \alpha t), M^{\mu}(Ty, Ax, (2 - \alpha)t)\}$

(1.10.4) (A, S) and (B, T) are weakly compatible.

Then A, B, S and T have a unique common fixed point in X.

Further, in [9], the following open problem is raised.

Open problem 1.11: Is theorem 1.9 true if min t – norm is replaced by any continuous t –norm?

2. MAIN RESULT

In this section we present our main result and obtain theorem 1.9 (and consequently corollary1.10). This answers the open problem 1.11 partially, in the affirmative.

Theorem 2.1: Let (X, M, *) be a fuzzy metric space and * be Hadzic type t – norm with condition (I). Let A, B, S and T be mappings of X into itself such that

- $(2.1.1) A(X) \subset T(X)$ and $B(X) \subset S(X)$, and one of A(X), B(X), S(X) or T(X) is a closed subset of X.
- (2.1.2) (A, S) or (B, T) satisfies the property (S B),
- (2.1.3) there exists a constant $k \in (0,1)$ and $\alpha \in (0,2)$, such that $k < \alpha, k + \alpha < 2$ and satisfies

 $M(Ax, By, kt) \ge *\{M(Sx, Ty, t), M(Sx, Ax, t), M(Ty, By, t), M(Sx, By, \alpha t), M(Ty, Ax, (2 - \alpha)t)\}$

(2.1.4)(A, S) and (B, T) are weakly compatible.

Then A, B, S and T have a unique common fixed point in X.

Proof: Without loss of generality we suppose that T(X) is a closed and (B, T) satisfies the S-B property. Then there exists a sequence $\{x_n\}$ in X such that

$$\lim_{n\to\infty} Bx_n = \lim_{n\to\infty} Tx_n = z \text{ for some } z \in X.$$
 (J)

Since $B(X) \subset S(X)$ there exists a sequence $\{y_n\}$ in X such that $Bx_n = Sy_n$.

Hence $\lim_{n\to\infty} Sy_n = z$. Now we prove that $\lim_{n\to\infty} Ay_n = z$. By (2.1.3),

$$M(Ay_n, Bx_n, kt) \ge * \{M(Sy_n, Tx_n, t), M(Sy_n, Ay_n, t), M(Tx_n, Bx_n, t), M(Sy_n, Bx_n, \alpha t), M(Tx_n, Ay_n, (2 - \alpha)t)\}$$

$$= * \{M(Bx_n, Tx_n, t), M(Bx_n, Ay_n, t), M(Tx_n, Bx_n, t), M(Bx_n, Bx_n, \alpha t), M(Tx_n, Ay_n, (2 - \alpha)t)\}$$

$$= * \{M(Tx_n, Bx_n, t), M(Bx_n, Ay_n, t), 1, M(Tx_n, Ay_n, (2 - \alpha)t)\}$$

$$\lim_{n\to\infty}\inf\left(M(Ay_n,Bx_n,kt)\right) \geq * \left\{\lim_{n\to\infty}\inf\left(M(Tx_n,Bx_n,t)\right), (Bx_n,Ay_n,t)\right)\lim_{n\to\infty}\inf\left(M(Tx_n,Ay_n,(2-\alpha)t)\right)\right\}$$

$$= * \left\{1,\lim_{n\to\infty}\inf\left(M(z,Ay_n,t)\right),\lim_{n\to\infty}\inf\left(M(z,Ay_n,(2-\alpha)t)\right)\right\} \text{ (by (J))}$$

$$\geq * \left\{\lim_{n\to\infty}\inf\left(M(z,Ay_n,\lambda t)\right),\lim_{n\to\infty}\inf\left(M(z,Ay_n,\lambda t)\right)\right\}$$

where $\lambda = \min\{1, (2 - \alpha)\}\$

Since * is of Hadzic type t – norm to $\varepsilon > 0 \exists \delta > 0 \ni x > 1 - \delta \Rightarrow *^p(x) > 1 - \varepsilon$ for $p \in N$

$$*^{2^m} \lim_{n \to \infty} \inf \left(M\left(z, Ay_n, \left(\frac{\lambda}{k}\right)^m t\right) \right) > 1 - \varepsilon$$

Whenever
$$\lim_{n\to\infty}\inf\left(M\left(z,Ay_n,\left(\frac{\lambda}{k}\right)^mt\right)\right)>1-\delta$$

To δ corresponds a $q \in z^+ \ni \lim_{n \to \infty} \inf \left(M\left(z, Ay_n, \left(\frac{\lambda}{k}\right)^m t\right) \right) > 1 - \delta$ if $m \ge q$ by (I)

$$: *^{2^m} \lim_{n \to \infty} \inf \left(M\left(z, Ay_n, \left(\frac{\lambda}{k}\right)^m t\right) \right) > 1 - \varepsilon \text{ if } m \ge q$$

$$\text{ } \text{ } \lim_{n \to \infty} \inf \left(M(Ay_n, z, t) \right) \geq *^{2^m} \lim_{n \to \infty} \inf \left(M\left(z, Ay_n, \left(\frac{\lambda}{k}\right)^m t\right) \right) > 1 - \varepsilon \quad \text{ whenever } m \geq q \; \forall \; t > 0$$

$$\therefore \lim_{n\to\infty}\inf\bigl(M(Ay_n,z,t)\bigr)\geq 1$$

$$\therefore \lim_{n\to\infty}\inf(M(Ay_n,z,t))=1$$

$$\therefore Ay_n \to z$$

Since T(X) is a closed subset of X, $\exists v \in X \ni Tv = z \in X$.

We have $\lim_{n\to\infty} Ay_n = \lim_{n\to\infty} Tx_n = \lim_{n\to\infty} Sy_n = \lim_{n\to\infty} Bx_n = Tv$.

By (2.1.3),
$$M(Ay_n, Bv, kt) \ge *\{M(Sy_n, Tv, t), M(Sy_n, Ay_n, t), M(Tv, Bv, t), M(Sy_n, Bv, \alpha t), M(Tv, Ay_n, (2 - \alpha)t)\}$$

 \therefore On letting $n \to \infty$, we get

$$\begin{split} M(z,Bv,kt) & \geq * \{ M(z,Tv,t), M(z,z,t) \ M(z,Bv,t) M(z,Bv,\alpha t), M(z,z,,(2-\alpha)t) \} \\ \\ & \geq * \{ 1,1, M(z,Bv,t) M(z,Bv,\alpha t), 1 \} \\ \\ & = * \{ M(z,Bv,t), M(z,Bv,\alpha t) \} \end{split}$$

$$M(z, Bv, t) \ge *^2 M(z, Bv, \left(\frac{\lambda}{\nu}\right)t) \ge *^2 M(z, Bv, \left(\frac{\lambda}{\nu}\right)^2 t) \ge \dots \ge *^{2^m} M(z, Bv, \left(\frac{\lambda}{\nu}\right)^m t)$$

To
$$\varepsilon > 0 \ \exists \delta > 0 \ \Rightarrow \ *^{2^m} M(z, Bv, \left(\frac{\lambda}{\tau}\right)^m t) > 1 - \varepsilon \text{ if } M(z, Bv, \left(\frac{\lambda}{\tau}\right)^m t) > 1 - \delta$$

 $\geq * \{M(z, Bv, \lambda t), M(z, Bv, \lambda t)\}$ where $\lambda = min \{1, \alpha\}$

To δ corresponds a $q \in z^+ \ni M(z, Bv, \left(\frac{\lambda}{v}\right)^m t) > 1 - \delta$ if $m \ge q$

$$\therefore m \ge q \Rightarrow *^{2^m} M(z, Bv, \left(\frac{\lambda}{k}\right)^m t) > 1 - \varepsilon \ \forall \ t > 0$$

$$M(z, Bv, t) \ge 1 - \varepsilon$$
. This is true for every $t > 0$.

$$M(z, Bv, t) \ge 1.$$

$$\therefore M(z, Bv, t) = 1.$$

$$\therefore Bv = z.$$

$$\therefore Tv = Bv = z.$$

Since (B, T) is weakly compatible, $BTv = TBv \Rightarrow Bz = Tz$.

Since
$$B(X) \subset S(X)$$
, $\exists u \in X \ni Su = Bv$. By (2.1.3)

$$M(Au, Bv, kt) \ge *\{M(Su, Tv, t), M(Su, Au, t), M(Tv, Bv, t), M(Su, Bv, \alpha t), M(Tv, Au, (2 - \alpha)t)\}$$

$$\begin{split} M(Au, Tv, kt) & \geq * \left\{ M(Bv, Tv, t), M(Tv, Au, t). M(Tv, Bv, t), M(Tv, Bv, \alpha t), M(Tv, Au, (2 - \alpha)t) \right\} \\ & = * \left\{ 1, M(Tv, Au, t), 1, 1, M(Tv, Au, (2 - \alpha)t) \right\} \\ & \geq * \left\{ M(Au, Tv, \lambda t), M(Au, Tv, \lambda t) \right\} \text{ where } \lambda = min\{1, 2 - \alpha\} \end{split}$$

$$M(Au, Tv, t) \ge *^2 M(Au, Tv, \left(\frac{\lambda}{k}\right)t) \ge *^2 M(Au, Tv, \left(\frac{\lambda}{k}\right)^2 t) \ge \dots \ge *^{2^m} M(Au, Tv, \left(\frac{\lambda}{k}\right)^m t)$$

To
$$\varepsilon > 0 \; \exists \delta > 0 \; \ni \; *^{2^m} M \left(Au, Tv, \left(\frac{\lambda}{k} \right)^m t \right) > 1 - \varepsilon \; \text{if} \; M \left(Au, Tv, \left(\frac{\lambda}{k} \right)^m t \right) > 1 - \delta$$

To δ corresponds a $q \in z^+ \ni M(Au, Tv, \left(\frac{\lambda}{L}\right)^m t) > 1 - \delta$ if $m \ge q$

$$\therefore m \geq q \Rightarrow *^{2^m} M(Au, Tv, \left(\frac{\lambda}{k}\right)^m t) > 1 - \varepsilon \,\forall \, t > 0$$

 $M(Au, Tv, kt) \ge 1 - \varepsilon$. This is true for every t > 0.

$$\therefore M(Au, Tv, t) \ge 1.$$

$$\therefore M(Au, Tv, t) = 1.$$

$$\therefore Au = Tv.$$

Since (A, S) is weakly compatible, we have $ASu = SAu \Rightarrow Az = Sz$.

By (2.1.3),
$$M(Au, Bz, kt) \ge * \{M(Su, Tz, t), M(Su, Au, t), M(Tz, Bz, t), M(Su, Bz, \alpha t), M(Tz, Au, (2 - \alpha)t)\}$$

$$\therefore M(z, Tz, kt) \ge * \{M(z, Tz, t), M(Au, Au, t), M(Tz, Tz, t), M(z, Tz, \alpha t), M(Tv, Au, (2 - \alpha)t)\}$$

$$= * M(z, Tz, t), 1, 1, M(z, Tz, \alpha t), M(Tz, z, (2 - \alpha)t)\}$$

$$= * \{M(z, Tz, t), M(z, Tz, \alpha t), M(Tz, z, (2 - \alpha)t)\}$$

$$\ge * \{M(z, Tz, \lambda t), M(z, Tz, \lambda t), M(z, Tz, \lambda t)\} \text{ where } \lambda = \min \{1, \alpha, (2 - \alpha)\}$$

$$\therefore M(z,Tz,t) \ge *^3 M(z,Tz,\left(\frac{\lambda}{k}\right)t) \ge *^{3^2} M(z,Tz,\left(\frac{\lambda}{k}\right)^2 t) \ge \ldots \ge *^{3^m} M(z,Tz,\left(\frac{\lambda}{k}\right)^m t)$$

To
$$\varepsilon > 0 \; \exists \delta > 0 \; \ni \; *^{3^m} M(z, Tz, \left(\frac{\lambda}{k}\right)^m t) > 1 - \varepsilon \; \text{if} \; M(z, Tz, \left(\frac{\lambda}{k}\right)^m t) > 1 - \delta$$

To δ corresponds a $q \in z^+ \ni M(z, Tz, \left(\frac{\lambda}{k}\right)^m t) > 1 - \delta$ if $m \ge q$

 $= *^3 M(z, Tz, \lambda t)$

$$\therefore m \ge q \Rightarrow *^{3^m} M(z, Tz, \left(\frac{\lambda}{k}\right)^m t) > 1 - \varepsilon \ \forall \ t > 0$$

$$M(z, Tz, t) \ge 1 - \varepsilon$$

$$M(z, Tz, t) \ge 1$$

$$M(z,Tz,t) = 1$$

$$\therefore z = Tz$$
.

Now, in a similar way we can show that Az = z.

$$\therefore z = Tz = Bz = Sz = Az.$$

 \Rightarrow z is a common fixed point of A, B, S and T.

Uniqueness: Let *p*, *q* be two common fixed points of *A*, *B*, *S* and *T*.

Then by (2.1.3),
$$M(Ap, Bq, kt) \ge * \{M(Sp, Tq, t), M(Sp, Ap, t), M(Tq, Bq, t), M(Sp, Bq, \alpha t), M(Tq, Ap, (2 - \alpha)t)\}$$

$$\ge * \{M(p, q, t), M(p, p, t), M(q, q, t), M(p, q, \alpha t), M(q, p, (2 - \alpha)t)\}$$

$$\ge * \{M(p, q, t), 1, 1, M(p, q, \alpha t), M(q, p, (2 - \alpha)t)\}$$

$$\ge * \{M(p, q, t), M(p, q, \alpha t), M(q, p, (2 - \alpha)t)\}$$

$$\ge * \{M(p, q, \lambda t), M(p, q, \lambda t), M(p, q, \lambda t)\} \text{ where } \lambda = \min\{1, \alpha, (2 - \alpha)\}$$

$$M(p,q,t) \ge *^3 M(p,q,\left(\frac{\lambda}{k}\right)t) \ge *^{3^2} M(p,q,\left(\frac{\lambda}{k}\right)^2 t) \ge ... \ge *^{3^m} M(p,q,\left(\frac{\lambda}{k}\right)^m t)$$

To
$$\varepsilon > 0 \; \exists \delta > 0 \; \ni \; *^{3^m} M \left(p,q,\left(\frac{\lambda}{k} \right)^m t \right) > 1 - \varepsilon \; \text{if} \; M \left(p,q,\left(\frac{\lambda}{k} \right)^m t \right) > 1 - \delta$$

To δ corresponds a $q \in z^+ \ni M(p, q, \left(\frac{\lambda}{k}\right)^m t) > 1 - \delta$ if $m \ge q$

$$\therefore m \ge q \Rightarrow *^{3^m} M(p, q, \left(\frac{\lambda}{k}\right)^m t) > 1 - \varepsilon \,\forall \, t > 0$$

$$\therefore M(p,q,t) \ge 1 - \varepsilon$$

- $M(p,q,t) \ge 1$
- $\therefore M(p,q,t) = 1$
- $\therefore p = q$. This completes the proof of the theorem.

Note: Theorem 1.9 follows as a corollary to theorem (2.1), if $k < \alpha < 1$ and $k + \alpha < 2$, since $t * t \ge t$ for all $t > 0 \Rightarrow *$ is the mint - norm.

We conclude the paper with two open problems.

Open problem1: Is theorem 2.1 true if either $k < \alpha$ or $k + \alpha < 2$ is violated.

Open problem2: Is theorem 2.1 true if * is continuous t –norm (not necessarily Hadzic type t – norm)?

ACKNOWLEDGEMENT

The third author (N.U) is grateful to Raghu Engineering College authorities for giving permission and the management of SITAM for giving facilities to carry on this research.

REFERENCES

- [1] Banach.S. TheoriedesoperationsLineaires, MonografieMathematyczne, Warsawa, Poland, 1932.
- [2] Cho, Y.J., Fixed points in fuzzy metric spaces, J. Fuzzy Math., 5(4) (1997), 949-962.
- [3] George.A and Veeramani.P, On some results in fuzzy metric spaces, Fuzzy Sets and Systems, 64(1994), 395-399.
- [4] Grabiec.M, Fixed points in fuzzy metric space, fuzzy sets and systems, 27(1988), 385-389.
- [5] Hadzic.O. On the (ϵ, λ) topology in probabilistic locally convex spaces, Glasnik Matem, 1978, 13(33), 293-297.
- [6] Kramosil.I and Michalek.J, Fuzzy metric and statistical metric spaces, Ky-bernetika, 11(1975), 336-344.
- [7] Mishra, S. N., Sharma, N. and Singh, S. L. (1994). Common fixed points of maps in fuzzy metric spaces. *Internat. J. Math. Sci.*, 17, 253-258.
- [8] Rajinder Sharma, Common fixed point of weakly compatible mappings under a new property in fuzzy metric spaces, Vol.2, no4, (2012) 38-44, Net work and complex systems.
- [9] Sastry.K.P.R, Naidu.G.A, Umadevi.N, Common fixed point theorem for four self maps on a fuzzy metric space under S-B property. (Communicated).
- [10] Schweizer.B and Sklar.A, Probabilistic Metric Spaces, North Holland, Amsterdam, 1983.
- [11] Sharma, Sushil and Bamboria, D. (2006). Some new common fixed point theorems in fuzzy metric space under strict contractive conditions, *J. Fuzzy Math.*, 14, No. 2, 1-11.
- [12] Singh.B and Jain.S. Weak compatibility and fixed point theorems in fuzzy metric spaces, Ganita, 56(2) (2005), 167-176.
- [13] Zadeh.L.A, Fuzzy sets, Infor. and Control, 8(1965), 338-353.

Source of support: Nil, Conflict of interest: None Declared