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ABSTRACT 
According to a famous result of Enestrom and Kakeya, if 01

1
1 ......)( azazazazP n

n
n

n ++++= −
− is a polynomial 

of degree n such that 011 ......0 aaaa nn ≤≤≤≤< − , then P(z) does not vanish in 1.z <  In this paper we relax 
the hypothesis of this result in several ways and obtain zero-free regions for polynomials with restricted coefficients 
and thereby present some interesting generalizations and extensions of the Enestrom-Kakeya Theorem.   
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1. INTRODUCTION AND STATEMENT OF RESULTS 
The following elegant result on the distribution of zeros of a polynomial is due to Enestrom and Kakeya [6] : 
 

Theorem A: If ∑
=

=
n

j

j
j zazP

0
)(  is a polynomial of degree n such that 

                              0...... 011 >≥≥≥≥ − aaaa nn , then P(z) has all zeros in 1z ≤ . 
 

Applying the above result to the polynomial )1(
z

Pz n , we get the following result: 

 

Theorem B: If ∑
=

=
n
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j
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0
)(  is a polynomial of degree n such that 

                              011 ......0 aaaa nn ≤≤≤≤< − , then P(z) does not vanish in 1<z . 
 
In the literature [1-5, 7, 8], there exist several extensions and generalizations of the Enestrom-Kakeya Theorem. 
Recently B. A. Zargar [9] proved the following results: 
 

Theorem C: Let ∑
=

=
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j
j zazP

0
)(  be a polynomial of degree n . If for some      real number 1≥k ,  

                                  011 ......0 kaaaa nn ≤≤≤≤< − , then P(z) does not vanish in the disk 
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Theorem D: Let ∑
=

=
n
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j
j zazP

0
)(  be  a polynomial of degree n . If for some  real number na<≤ ρρ 0, ,  

                                  011 ......0 aaaa nn ≤≤≤≤−< −ρ , then P(z) does not vanish in the disk 
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Theorem E: Let ∑
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)(  be a polynomial of degree n . If for  some  real number 1≥k ,  

                                  0...... 011 >≥≥≥≥ − aaaka nn , then P(z) does not vanish in  
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Theorem F: Let ∑
=
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0
)(  be  a polynomial of degree n . If for some real number ,0≥ρ ,  

                                  0...... 011 >≥≥≥≥+ − aaaa nn ρ , then P(z) does not vanish in the disk 
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In this paper we give generalizations of the above mentioned results. In fact, we prove the following results: 
 

Theorem 1: Let ∑
=

=
n

j

j
j zazP

0
)(  be  a polynomial of degree n . If for some real numbers 1≥k  and ,0≥ρ ,  

                                  011 ...... kaaaa nn ≤≤≤≤− −ρ , then P(z) does not vanish in the disk 
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0
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Remark 1: Taking ,0 na<= ρ Theorem 1 reduces to Theorem C and taking k=1 and ,0 na<≤ ρ , it reduces to 
Theorem D. 
 

Theorem 2: Let ∑
=

=
n

j
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0
)(  be a polynomial of degree n . If for  some  real numbers 0≥ρ  and  0 1τ< ≤  , 

                                  011 ...... aaaa nn τρ ≥≥≥≥+ − , then P(z) does not vanish in  
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Remark 2: Taking 1=τ  and 00 >a , Theorem 1 reduces to Theorem F and taking 1=τ , 00 >a  and 

1,)1( ≥−= kak nρ , it reduces to Theorem E.  
 
Also taking 1,)1( ≥−= kak nρ , we get the following result which reduces to Theorem E by taking 00 >a  and 

1=τ . 
 

Theorem 3: Let ∑
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                                  011 ...... aaaka nn τ≥≥≥≥ − , then P(z) does not vanish in the disk 
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2. PROOFS OF THE THEOREMS 
Proof of Theorem 1: We have 
                     01
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 =  
 

 

and 
                    )()1()( zQzzF −= . 
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− − −= − − − + − + + − + − + . 

For 1>z , 
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          0>  
 

if                    ( )0 0 0
0

1 2n nz k a a a a a
a

ρ > + − − + +  . 

 
This shows that all the zeros of F(z) whose modulus is greater than 1 lie in the closed disk 

                      ( )0 0 0
0

1 2n nz k a a a a a
a

ρ ≤ + − − + +  . 

 
But those zeros of F(z) whose modulus is less than or equal to 1 already lie in the above disk. Therefore, it follows that 
all the zeros of F(z) and hence Q(z) lie in 

                      ( )0 0 0
0

1 2n nz k a a a a a
a

ρ ≤ + − − + +  . 

Since )1()(
z

QzzP n= , it follows, by replacing z by 
z
1

, that all the zeros of P(z) lie in  

                      ( )
0

0 0 0 2n n
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z
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≥

+ − − + +
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Hence P(z) does not vanish in the disk 

                      ( )
0

0 0 0 2n n

a
z

k a a a a a ρ
<

+ − − + +
. 

That proves Theorem 1. 
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Proof of Theorem 2: We have 
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This shows that all the zeros of F(z) whose modulus is greater than 1 lie in the closed disk 

                   ( ){ }0 0 0
0

1 2n nz a a a a a
a

τ ρ≤ − + + + + . 

 
But those zeros of F(z) whose modulus is less than or equal to 1 already lie in the above disk. Therefore, it follows that 
all the zeros of F(z) and hence Q(z) lie in 

                   ( ){ }0 0 0
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Since )1()(
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QzzP n= , it follows,  by replacing z by 
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, that all the zeros of P(z) lie in  
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Hence P(z) does not vanish in the disk 
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That proves Theorem 2.  
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