

ON NORMAL ALMOST DISTRIBUTIVE LATTICES

S. RAMESH*

Department of Mathematics, GITAM University, Visakhapatnam-530045, INDIA

U. M. SWAMY

Department of Mathematics, University of Gondar, Ethiopia

(Received on: 11-02-13; Revised & Accepted on: 09-03-13)

ABSTRACT

We examine the normality of subADLs of a normal ADL₀. We obtain necessary and sufficient conditions for an ADL₀ to become normal (relatively normal) in terms of filter congruences and prime filter congruences.

Mathematics Subject Classifications (2000): 06D99.

Keywords: Relatively complemented ADL₀, Normal ADL₀, Prime ideals, Minimal prime ideals, Congruences.

INTRODUCTION

The concept of almost distributive lattice with zero (ADL_0) was introduced by Swamy and Rao [5] in 1980 as a common abstract of ring theoretic and lattice theoretic generalization of Boolean algebras. It is an algebraic structure of type (2, 2, 0) which satisfies all the conditions of a distributive lattice except the commutativity of \lor , \land and the right distributivity of \lor over \land . Rao and Ravi Kumar [3] introduced the concept of the normality of an ADL₀ in 2008. They obtained several equivalent conditions for an ADL₀ to become a normal almost distributive lattice in terms of prime ideals, minimal prime ideal and annihilator ideals.

In this paper, we observe that a subADL₀ of a normal ADL₀ need not be normal. We obtain a necessary and sufficient condition for a subADL₀ of a normal ADL₀ to become a normal subADL₀. We study the normality and relative normality of an ADL₀ in terms of filter congruences and prime filter congruences

1. PRELIMINARIES

First we recall the definitions and certain necessary properties of almost distributive lattices with zero from [5].

Definition 1.1: [5] An Algebra $(L, \lor, \land, 0)$ of type (2, 2, 0) is called an almost distributive lattice with 0 (ADL₀) if, it satisfies the following conditions.

(i) $0 \land a = 0$ (ii) $a \lor 0 = a$ (iii) $a \land (b \lor c) = (a \land b) \lor (a \land c)$ (iv) $(a \lor b) \land c = (a \land c) \lor (a \land b)$ (v) $a \lor (b \land c) = (a \lor b) \land (a \lor c)$ (vi) $(a \lor b) \land b = b$ for all a, b, $c \in L$.

Example 1.2: [5] Let X be a non empty set. Fix $x_0 \in X$. For any x, $y \in X$, define

$$x \lor y = \begin{cases} x & \text{ if } x \neq x_0 \\ y & \text{ if } x = x_0 \end{cases} \text{ and } x \land y = \begin{cases} y & \text{ if } x \neq x_0 \\ x & \text{ if } x = x_0 \end{cases}$$

Then (X, \lor, \land, x_0) is an almost distributive lattice with x_0 as its "0"

Form here onwards L means almost distributive lattice with '0' as its zero element. For any a, $b \in L$, we say that a is less than or equal to b (that is, $a \leq b$) if $a \wedge b = a$ or equivalently $a \vee b = b$. It can be easily verified that ' \leq ' is a partial ordering on L. An element m of L is said to be maximal if $m \wedge x = x$ for all $x \in L$.

Research Journal of Pure Algebra-Vol.-3(3), March – 2013

S. RAMESH* & U. M. SWAMY/ ON NORMAL ALMOST DISTRIBUTIVE LATTICES/ RJPA- 3(3), March-2013.

Definition 1.3: [5] A non empty sub set I of L is said to be an ideal (filter) of L, if it satisfies the following conditions;

(i) For all $a, b \in L, a \lor b \in L$ $(a \land b \in L)$

(ii) For all $a \in L, x \in I, a \land x \in I (x \lor a \in L)$

A proper ideal (filter) P of L is said to be a prime ideal (filter) if, for any $a, b \in L$, $a \land b \in P$ ($a \lor b \in P$) implies $a \in P$ or $b \in P$. It can be routinely verified that a proper sub set P of L is prime ideal of L if and only if L-P is a prime filter of L.

Definition 1.4: [5] A prime ideal P of L is said to be a minimal prime ideal of L, if there is no prime ideal which is properly contained in P. Similarly, a proper filter P of L is said to be maximal filter of L if there is no proper filter containing P. It can be easily verified that a proper ideal P of L is a minimal prime ideal of L if and only if L-P is a maximal filter of L. Since every proper filter contained in a maximal filter, every non-zero element is contained in a maximal filter. Therefore for any non-zero element x of L, there is a minimal prime ideal P of L such that $x \notin P$. Hence we have the following.

Theorem 1.5: [6] The intersection of all minimal prime ideals of L is equal to {0}.

For any $x \in L$, the set $(x)^* = \{y \in L \mid x \land y = 0\}$ is an ideal of L.

Theorem 1.6:[4] A prime ideal P of L is minimal if and only if, for each $x \in P$, there exists $y \notin P$ such that $x \land y = 0$. (That is, (L-P) $\bigcap (x)^*$ is non-empty.)

Definition 1.7: [5] L is said to be a relatively complemented if, given a, $b \in L$, there exists $x \in L$ such that $a \land x = 0$ and $a \lor x = a \lor b$.

Theorem 1.8: [5] L is relatively complemented if and only if every prime ideal is minimal.

2. ON NORMAL ALMOST DISTRIBUTIVE LATTICES

An almost distributive lattice with zero is called normal [3] if, every prime ideal contains a unique minimal prime ideal or equivalently, for x, y in L, $x \land y = 0$ implies $(x)^* \lor (y)^* = L$. A non empty subset S of L is said to be a subADL₀, if it contains "0" and closed under operations \lor and \land . An almost distributive lattice with zero L is said to be a dense if $\{0\}$ is a prime ideal of L.

We observe that a subADL $_0$ of a normal ADL $_0$ need not be normal. For, consider the following example.

Example 2.1: Let $X = \{a, b, c\}$. Let $L = \{\phi, \{a\}, \{b\}, \{a, b\}, X\}$. Then L is a subADL₀ of P(X) with respect to the set inclusion and L is not normal.

In this context, we obtain the following.

Theorem 2.2: The following are equivalent for any ADL₀ L.

(i) Every $subADL_0$ of L is normal

(ii) For x, $y \in L{-}\{0\}$, $x \land y = 0$, implies $x \lor y$ is maximal

(iii) L is dense ADL₀ or L relatively complemented and every chain in L has at most three elements.

Proof: (i) \Rightarrow (ii): Suppose that every subADL₀ of L is normal. Let x, $y \in L$ -{0} such that $x \land y = 0$. Suppose there is $z \in L$ such that $x \lor y < z$. Then $L_1 = \{0, x, y, x \lor y, z\}$ is a subADL₀ of L which is not normal. This is a contradiction to our assumption. Therefore $x \lor y$ is maximal.

(ii) \Rightarrow (iii): Assume (ii). Suppose L is not dense ADL₀. Then {0} is not a prime ideal of L. Let P be a prime ideal of L. Suppose P is not a minimal prime ideal of L. Then there is a minimal prime ideal M (\neq {0}) of L such that M \subset P. Choose x \in M such that x \neq 0. Now, for any y \in L, 0 \neq y \in (x)^{*} \cap P \Rightarrow x \land y = 0 and y \in P \Rightarrow x \lor y is maximal (by our assumption) and x \lor y \in P (since y \in P and x \in M \subset P). This is a contradiction to the minimality of M (see Theorem 1.6). Therefore every prime ideal is minimal and hence L is relatively complemented (see Theorem 1.8). Let x, y, z \in L-{0} such that 0 < x < y < z. Since L is relatively complemented, there exists t \in L such that x \land t = 0 and x \lor t = x \lor y = y. By our assumption, we get that y = x \lor t is maximal. This is a contradiction. Therefore every chain has at most three elements.

(iii) \Rightarrow (i): Assume (iii). Let L_1 be a subADL₀ of L. Let x, $y \in L_1$ such that $x \land y = 0$. Suppose $x \neq 0$ and $y \neq 0$.

Then $0 < x < x \lor y$. Otherwise $x = x \lor y$ implies $y = (x \lor y) \land y = x \land y = 0$, which is a contradiction. By our assumption, $x \lor y$ is maximal in L_1 and $x \lor y \in (y)^*_{L_1} \lor (x)^*_{L_2} = L_1$. Thus L_1 is normal.

© 2013, RJPA. All Rights Reserved

Given a filter F of L, define $\varphi_F := \{(a, b) \in L \times L \mid x \land a = x \land b \text{ for some } x \in F\}$. Then φ_F is a congruence on L.

The following is a routine verification.

Theorem 2.3: For any filter F of L and $x \in L$, we have

(i)
$$\frac{x}{\varphi_F}$$
 is a maximal in $\frac{L}{\varphi_F}$ if and only if $x \in F$
(ii) $\frac{x}{\varphi_F} = \frac{0}{\varphi_F}$ if and only if $(x)^* \cap F \neq \phi$

(11)
$$\overline{\varphi_F} = \overline{\varphi_F}$$
 if and only if (x)

Proof: (i) Suppose $\frac{x}{\varphi_F}$ is a maximal element in $\frac{L}{\varphi_F}$. Since $F \neq \phi$, we can choose $y \in F$. Then $\frac{x}{\varphi_F} \land \frac{y}{\varphi_F} = \frac{y}{\varphi_F}$.

That is $(x \land y, y) \in \varphi_F$. Therefore there exists $a \in F$ such that $a \land x \land y = a \land y \in F$ and hence $x \in F$. On the other hand, suppose $x \in F$. Let $y \in L$. The $x \land x \land y = x \land y$.

Therefore $(x \land y, y) \in \varphi_F$ and hence $\frac{x}{\varphi_F} \land \frac{y}{\varphi_F} = \frac{y}{\varphi_F}$. Thus $\frac{x}{\varphi_F}$ is a maximal element in $\frac{L}{\varphi_F}$.

(iii) Suppose
$$\frac{x}{\varphi_F} = \frac{0}{\varphi_F}$$
. Then there exists $y \in F$ such that $y \land x = y \land 0 = 0$. Therefore $y \in (x)^* \cap F$ and

hence $(x)^* \cap F \neq \phi$. On the other hand, suppose $(x)^* \cap F \neq \phi$. Choose $y \in F$ such that $x \land y = 0$. Then $y \land x = y \land 0$. Therefore $(x, 0) \in \varphi_F$ and hence $\frac{x}{\varphi_F} = \frac{0}{\varphi_F}$.

In the following, for any filter F of L, we obtain a one-to-one correspondence between prime ideals of L disjoint with F and prime ideal of $\frac{L}{\varphi_F}$.

Theorem 2.4: Let F be a filter of L. For any prime ideals P of L with P $\bigcap F = \phi$, let $\overline{P} = \left\{ \frac{x}{\varphi_F} \in \frac{L}{\varphi_F} | x \in P \right\}$. Then

 \overline{P} is a prime ideal of $\frac{L}{\varphi_F}$. Also, $P \mapsto \overline{P}$ is an order isomorphism (with respect to the inclusion ordering) of the set of

prime ideals of L disjoint with F onto the set of prime ideals of $\frac{L}{\varphi_F}$. This map induces a one to one correspondence

between minimal prime ideals of L disjoint with F and minimal prime ideals of $\frac{L}{\varphi_F}$.

Proof: Let P be a prime ideal of L such that $P \cap F = \phi$. Then, it is easily to verify that $\overline{P} = \left\{ \frac{x}{\varphi_F} | x \in P \right\}$ is an ideal

of $\frac{L}{\varphi_F}$. Also, we observe that, for any $a \in L$, $\frac{a}{\varphi_F} \in \overline{P} \Leftrightarrow a \in P$. Now, for any $x, y \in L$, $\frac{x}{\varphi_F} \wedge \frac{y}{\varphi_F} \in \overline{P} \Rightarrow \frac{(x \wedge y)}{\varphi_F} \in \overline{P} \Rightarrow x \wedge y \in P \Rightarrow x \in P$ or $y \in P$ (since P is prime) $\Rightarrow \frac{x}{\varphi_F} \in \overline{P}$ or $\frac{y}{\varphi_F} \in \overline{P}$.

Therefore \overline{P} is a prime ideal of $\frac{L}{\varphi_F}$. Now, for any prime ideals P and Q of L with $P \cap F = \phi = Q \cap F$,

$$P \subseteq Q \Leftrightarrow \overline{P} \subseteq \overline{Q}$$
. Let R be a prime ideal of $\frac{L}{\varphi_F}$. Put $P = \left\{ x \in L \mid \frac{x}{\varphi_F} \in R \right\}$. Then P is a prime ideal of L

disjoint with F and $\overline{P} = R$. Thus the map $P \mapsto \overline{P}$ is an order isomorphism from the set of prime ideals of L disjoint with F onto the set of prime ideals of $\frac{L}{\varphi_F}$.

Any two ideals I and J are said to be co-maximal, if $I \lor J = L$. An ADL₀ L is relatively normal [3], if given x, $y \in L$ with $x \le y$, the interval $[x, y] = \{z \in L \mid x \le z \le y\}$ is normal, or equivalently, any two in comparable prime ideals are co-maximal. In general every relatively normal ADL₀ is normal but not conversely. For consider L = {0, a, b, c, d, 1}.

Then the prime ideals $P_1 = \{0, a, b\}, P_2 = \{0, a, c\}$ are incomparable and are not co-maximal.

The following is a consequence of the above.

Theorem 2.5: L is normal (relatively normal) if and only if, for any filter F of L, $\frac{L}{\varphi_F}$ is normal (relatively normal).

Note that any dense ADL_0 is normal, because $\{0\}$ is the unique prime ideal of L. Since the intersection of all minimal prime ideals is $\{0\}$ in any ADL_0 (see Theorem 1.5), it follows that an ADL_0 L is dense if and only if it has only one minimal prime ideal which is $\{0\}$. The following result is another characterization of the normality of an ADL_0 .

Theorem 2.6: L is normal if and only if, for any prime filter P of L, $\frac{L}{\varphi_P}$ is a dense ADL₀.

Proof: Suppose that L is normal. Let P be a prime filter of L and I = L - P. Then I is a prime ideal of L and hence I contains a unique minimal prime ideal. Say M. Then M is the only minimal prime ideal of L which is disjoint with P.

Therefore, by Theorem 2.4, $\frac{L}{\varphi_P}$ has a unique minimal prime ideal which implies that $\left\{\frac{0}{\varphi_P}\right\}$ is a prime ideal in $\frac{L}{\varphi_P}$

and hence $\frac{L}{\varphi_P}$ is dense. Conversely, suppose that $\frac{L}{\varphi_P}$ is a dense ADL₀, for any prime filter P of L. That is, the zero

ideal in $\frac{L}{\varphi_P}$ is prime. Let I be a prime ideal of L. Then P = L – I is a prime filter of L. By our assumption, $\frac{L}{\varphi_P}$ has

only one minimal prime ideal namely, $\left\{\frac{0}{\varphi_P}\right\}$. By Theorem 2.4, there is only one minimal prime ideal of L disjoint with P (or, equivalently, contained in I). Thus L is normal.

Given a congruence θ on L, we say that $\frac{L}{\theta}$ is an almost chain, if for any $x, y \in L, \frac{x}{\theta} \land \frac{y}{\theta} = \frac{y}{\theta}$ or $\frac{y}{\theta} \land \frac{x}{\theta} = \frac{x}{\theta}$.

Theorem 2.7: L is relatively normal if and only if $\frac{L}{\varphi_P}$ is an almost chain, for any prime filter P of L.

Proof: Suppose that L is relatively normal. Let P be a prime filter of L. Suppose that a and b are elements in L such that $\frac{a}{\theta} \wedge \frac{b}{\theta} \neq \frac{b}{\theta}$ and $\frac{b}{\theta} \wedge \frac{a}{\theta} \neq \frac{a}{\theta}$. Then there exists a prime ideal R and S of $\frac{L}{\varphi_P}$ such that $\frac{(a \wedge b)}{\varphi_P} \in R, \ \frac{b}{\varphi_P} \notin R, \ \frac{(b \wedge c)}{\varphi_P} \in S \text{ and } \frac{a}{\varphi_P} \notin S.$

© 2013, RJPA. All Rights Reserved

Put A = $\left\{x \in L | \frac{x}{\varphi_P} \in R\right\}$ and B = $\left\{x \in L | \frac{x}{\varphi_P} \in S\right\}$. Then A and B are prime ideals of L which are disjoint from P

and hence A and B are contained in the prime ideal L - P. This implies that A and B are not co-maximal. Also, we have

$$a \land b \in A, b \notin A \& a \in A \text{ and } b \land a \in B, a \notin B \& b \in B$$

So that A and B are incomparable. This is a contradiction. Thus $\frac{L}{\varphi_{P}}$ is an almost chain.

Conversely, suppose that, for any prime filter P of L, $\frac{L}{\varphi_P}$ is an almost chain. Let I and J be two incomparable prime

ideals of L such that $I \lor J \neq L$. Since every proper ideal is contained in a prime ideal (by the Zorn's lemma), there exists a prime ideal K of L such that $I \lor J \subseteq K$. Put P = L - K. Then P is a prime filter of L. Choose $x \in I - J$ and $y \in J - I$. Since $\frac{L}{\varphi_p}$ is an almost chain, with out loss of generality we can suppose that $\frac{x}{\varphi_p} \land \frac{y}{\varphi_p} = \frac{y}{\varphi_p}$. Then

 $(x \land y, y) \in \varphi_p$. Therefore $t \land x \land y = t \land y$ for some $t \in P = L - K$. Since $x \in I$, we get that $t \land y \in I$. Which is a contradiction, since $t \notin I$ and $y \notin I$. Therefore any two incomparable prime ideal are co-maximal. Hence L is relatively normal.

REFERENCE

- 1. Birkhoff, G., Lattice Theory, American Mathematical Society, Colloquium Publications, 1967.
- 2. Cornish, W.H., Normal lattices, J. Austral Math. Soc., Vol.14 (1971), 200-215.
- Rao, G.C., Ravi Kumar, S., Normal almost distributive lattices, Southeast Asian Bulletin of Mathematics, Vol.32 (2008), 831-841.
- 4. Rao, G.C., Ravi Kumar, S., *Minimal prime ideals in almost distributive lattices*, Int. J. Contemp. Math. Sciences, Vol.4(2009),475-484.
- 5. Swamy, U.M., Rao, G.C., Almost distributive lattices J. Austral math. Soc. Vol.31 (1981), 77-91.
- 6. Swamy, U.M., Ramesh, S., Shanthi Sundar Raj, Ch., Prime ideal characterization of Stone almost distributive lattices, Vol.3 (2010), 357-367.

Source of support: Nil, Conflict of interest: None Declared