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ABSTRACT
In this paper, we study Smarandache (S) specialdefinite rings and Smarandache (S)specialdefinite fields. We
givecharacterizations of a S-special definite ringanda S-special definite field and determine some properties of each of
them and obtain some result.
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INTRODUCTION

Smarandachealgebraic structures introduced by Raul Padilla and Florentine Smarandache[1] and [2]. S-special definite
algebraic structures suchas S - special definite groups,S - special definite rings and S - special definite fields definedby
W.B.Vasantha Kandasamy[3]. These new structures are defined as those strong algebraic structures which contain
weak algebraic structures. For instance, the existence of a semigroup in a group or a ring in a field or a semiring in a
ring.In this work westudy S-special definite rings and S - special definite fields. This paper consists of threesections.In
section one we state basic definitions on Smarandache algebraic structures that we need in our work. In sectiontwowe
givea characterization of S - special definite rings. It is shown that every S - special definite ring has characteristic zero
and that every ring of characteristic zero with identity is a S - special definite ring.Acharacterization of a S - special
definite ringis given usingits S - special definite substructures. A condition is given under which every non trivial
subring of a S - special definite ring is a S - special definite ring.In section three characterization of S-special definite
fields is given. It is shown that If F is a S-special definite field, then F containsan infinite countable numberof subrings
which are not field.We show that a finite field can not beS -special definite field. Moreoverwe study S-definite special
fields and we show that a field F is a S-definite special fieldif and only if F is a field of characteristic zero.

1. BACKGROUND

In thissection we state basic definitions on S-algebraic structures thatwe needin our work.

Theorem 1.1[4, P.50]: A finite semigroup is a group if and only if it is satisfies the cancellation law.

Theorem 1.2 [5, P.172]: If R is a finiteringwith more than one element withno divisor of zero, then R is a field.

Theorem 1.3 [4,P.249]: Let R be a ring with more than one element such that x R = R, for everynon zero element xeR.
Then R is a division ring.

Definition 1.4: [6] (S, +, *) is called a semiring, if it satisfies the following conditions
1. (S, +) isa commutative semigroup with identity.

2. (S, *)isasemigroup.

3. (@a+b)*c=a*c+b*candc*(a+b)=c*a+c*b,foralla b, cinS.

Definition 1.5: [3, P.61] A ring R is said to be S -special definite ring if there is a non empty subset S of R such that S
is just a semiring (S is a semiring under the induced operations of R, but not a ring). If H itself is a S-special definite
ring, then H is called a S-special definite subring of R.
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Definition 1.6 [7, P.38]: A’ S - ring R is a ring such that a proper subset F of R is a field with respect to the induced
operations of R.

Definition 1.7 [3, P.50]: A field F is said to be S - special definite field if there is anon empty subset R of F such that
R is just a ring (R is a ring under the induced operation of F but not a field). If H itself is a S-special definite field,
then we call H a S- special definite subfield of F. If F has no proper S-special definite subfield then we call Fto be a S -
special definite prime field.

Definition1.8 [6]: Let S be a non empty set. Then S is said to be a semifield, if it satisfies thefollowing conditions
1. Sisacommutative semiring with 1.

2. Sisastrict semiring, thatisifa+b=0,thena=b =0, foralla, b inS.

3. Ifab=0,theneithera=00rb=0,foralla binS.

Definition 1.9 [3, P.75]: Let F be a field and A a proper subset of F which is a semifield under the operations of F.
Then we say F is a S - definite special field.

2. S-SPECIAL DEFINITE RINGS

In this section we givea characterization of a S - special definite ring. It is shown that every S-special definite ring has
characteristic zero and that every ring of characteristic zero with identity is a S- special definite ring.A characterization
of a S - special definite ring is given using its S - special definite substructures. We give a condition under which every
non trivial subring of a S - special definitering is S-special definite subring.A necessary and sufficient condition is
given for group rings, polynomial rings and ring of matrices to be S - special definite rings.

Theorem 2.1: Let R be a ring. Then R is a S-special definite ring if and only ifthere exists acR such that na#0, for all
nezZ”.

Proof: Suppose R is a S-special definite ring and let S = R be just a semiring. Suppose for each a$S thereexists ne Z*
such thatn a=0. But (n-1) ae S so, -a= (n-1) aS, which shows that S is a ring, which is acontradiction with assumption
S is just a semiring.Thenthere exists a€S such that na#0, for all ne Z". (R, +) containsan element of infinite order.

Conversely suppose that there exists ae R such that na0, for all ne Z".

Let S={na+ba: n eZ" U{0}and beR }. Clearly S is a semiring.

If S is just a semiring, then the proofis complete, otherwise S is a ring and every element of S has an additive inverse in
S. Take any such element say 2a, then thereexists an element na+baeS such that 2a+ n a+ba=0, thus (2 + n) a+ba=0,
thus

~ba=(2+n)aand -b#0 @
Let S'= {beR; ba=na for some neZ"} U {0}. Then —beS". This means that S"# @. We claim that S” is just a semiring.
If by,b, are two non zero elements in S, then by a=n, a,b, a=n, a, for some ny, n,eZ", thus (by+by) a=b; a +b, a=n; a+
npa=(ny+ny)a, and (b; by) a=b; (b, a)=b; n, a= ny(by @)=(n; ny) a, thus b +b,e S™ and by bye S

If b,=0 or b,=0, then by b, =0e S” and (b, +b,= bye S” or by +b,= b,e S°).

Then S” is a semiring. -beS” and —b has no additive inverse in S, since otherwise if there exists an element b;e S”such
that —b +b;=0, then since b;eS" and b;=0 by (if b;=0, then —b =0, which is a contradiction), then b; a=n; a, for some

nie Z+ (2)

0=(-b+h,) a= —ba+b,a from (1) and (2) we get, 0=(2 + n) a + ny a =(2 + n+ ny) a, but naz0, for all ne Z", then
2 + n+ n;< 0 which is a contradiction , with assumption (n;e Z" and n eZ* U{0}), therefore-b has no additive inverse
in S, this means that (S, ...) is just a semiring, consequently R is a S-specialdefinite ring.

Examples 2.2:
1. For aninfinite set X the ring (P(X),A,N) is not a S-specialdefinite ring.
2. (Zy, +,.) with trivial multiplication is an infinite ring of characteristic zero, but it is not a S-special definite ring,

since for each aeZ~, there exists neZ'such that n.a=0.
3. (z,+,) isa S-special definite ring , since it contains (Z*,+,.), which is a semiring.
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Corollary 2.3: Every S-special definite ring is of characteristic zero.

Proof: The proof is a direct consequence of Theorem 2.1. From Corollary 2.3, we deduce that a finite ring can not be a
S-special definite ring.

The converse of Corollary2.3, is not true in general asthe infinite direct sum ®Zp, p runs over all prime numbersis a
ring of characteristiczero, but it is not a S-special definite ring.

Proposition 2.4: Let R is a ring with identity element 1 of characteristic zero.Then R is a S-special definite ring.

Proof: LetS={ n.1; n eZ'}{0}. Clearly S is a semiring. For each neZ", nl has no additive inverse in S, since if n
1+m 1=0, where m €Z"U{0}, then (n+m)1 =0, consequently (n+m)a=(n+m)(1a) = ((n+m)1)a =0, for all ac R, which
is a contradiction with R is of characteristic zero. Then S is just a semiring, hence R is a S-special definite ring. The
converse of Proposition 2.4, is not true in general as (2Z, +,.) is a S-special definite ring, without identity.

In the following proposition a necessary and sufficient conditionis given under which the direct product of two rings is
a S-special definite ring.

Proposition 2.5: Let R;, R, are two rings . Then Ryx R, is a S-special definite ring if andonly if at least one of R; or R,
is S-special definite ring.

Proof: Suppose R; is a S-special definite ring. Then there exists Sc R such that (S, +,.) is just a semiring. Hence
Sx {0} is just asemiring of R;x R,.S0, Rix R, is S-special definite ring. The proof is similar when R, is S-special
definite ring.

Conversely suppose that R;x R, is S-special definite ring. Then by Theorem 2.1, there exists (a,b) € R;x R, such that
(a,b) is of infinite order with respect to addition, thus a € R; is of infinite order with respect to addition or be R, is of
infinite order with respect to addition, since otherwise (there exist n, m e Z* such that na=0 and mb=0, then
nm (a,b) = (m(na), n(mb)) =(0, 0),which is a contradiction), then by Theorem 2.1, R; is S-special definite ring or R is
S-special definite ring. More generally we have

Corollary 2.6: If Ry R,,..., R, are rings, then R;x R, x ...xR, is a S-special definite ringif and only if at least one of
Ri Rz,..., Ry is a S-special definite ring.

Proposition 2.7: Every ring can be imbedded in a S-special definite ring.

Proof: Let R be a ring. Since (Z, +,.) is a S-special definite ring, thenby Proposition 2.5, Rx Z is a S-special definite
ring. But R x {0} is subring of Rx Z which is isomorphic to R. Then R is imbedded in Rx Z.

Theorem 2.8: Let RG bethe group ring of the group G over the ring R. Then RG is a S-special definite ring if and only
if R is a S-special definite ring.

Proof: Suppose that R is a S-special definite ring, thenby Theorem 2.1 there exists ac R such that nat0, for all ne Z".
Thenn (aeg) = (na) es#0re, for all ne Z*, by Theorem2.1, RG is a S-special definite ring.

Conversely suppose that RG is a S-special definite ring. ByTheorem 2.1, there exists agta;g;+ a,g,+...+a,gne RG,
where ay,...,a,€R and gs,...,0,€G such that n(ag+a;g:+...+a.g, ) # 0, for all ne Z*.Suppose that every element of (R,+)
is of finite order, soeveryelement a;eR there exists mje Z* such that m; &=0, S0 MmyMm;...My(ag+a:0:+a0p+...+a,gs) = 0
which is a contradiction, so there exists acR such that n.a#0, for all ne Z, then R is a S-special definite ring.

Theorem 2.9: Let R be aring. Then R[x] is a S-special definite ring if and only if R is a S-special definite ring.

Proof: Suppose that R is a S-special definite ring, thus there exists just a semiring S of R such that Sc Rc R[x], so
R[x] is a S-special definite ring.The converse is similar to Theorem 2.8.

Theorem 2.10: Let R be a ring. Then My(R) is a S-special definite ring if and only if R is a S-special definite ring.

Proof: Suppose that R is a S-special definite ring, thenby Theorem 2.1 there exists acR such that na£0 , for all ne Z*,

a 0 0 0
then n < ) ¢<§ > for all ne Z*, so by Theorem 2.1, M,(R) is a S-special definite ring.
0O - 0 0o - 0
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air vt Qi
Conversely suppose that M,(R) is a S-special definite ring. By Theorem 2.1, there exists ( : : )eMn(R)

ap1 = Qpp
a;; o Qg o - 0
suchthatn< - >¢<s > forallne Z".
ap1 = Qpp 0o - 0

Suppose that every element of (R,+) is of finite order, so for everya;jeR there exist mje Z'such thatmy; a;; =0. Let t=

a Ain 0 0
My1M1o... MMy Mys ... My, SO t ( : : ) = < ) , Whichis a contradiction, so there exists acR such
Ap1  ° App o - 0

that n.a#0, for all ne Z, then R is a S-special definite ring. It is clear that if R has a subring H which is a S-special
definite ring, then R is also S-special definite ring but the converse is not true in general as (ZxZ,,+,.) is a S-special
definite ring, since it contains the semiring ((Z"w{0})xZ,,+,.), but the subring ({0}xZ,,+,.) of (ZxZ,,+,.) is notaS-
special definite ring of R. Recall that if R be a S-special definite ring such that every non trivial subring of R is a S-
special definite subring, then R is called S - strong special definite ring [3, p.66].

Proposition 2.11: Let R be a S-special definite ring which has no zero divisors. Then R is a S - strong special definite
ring.

Proof: Let J be any non zero subring of R. Since R is a S-special definite ring, then there exists ae R such that n.a#0,
for all ne Z*. If x is a non zero element of J, then n.x #0, for all ne Z", since if n.x=0, for some ne Z", then (n.x) a=0,
then x. na=0. But X£0 and R has no zero divisor, then na=0, which is a contradiction with na#0, for all ne Z*. Then xel
and n.(x)#0, for all ne Z*, then by Theorem 2.1, J is a S-special definitesubring. Then every non trivial subring of R is
a S-special definite subring. Then R is a S -strong special definite ring. The converse of Proposition 2.11, is not true in
general as Z x Z is a ring which contains zero divisors, but every non zero subring of Z x Z is a S-special definite
subring, that isZ x Z is a S - strong special definite ring.

In the following theorem a necessary and sufficient conditionisgiven under which a S-special definite ring is a S-
strong special definite ring.

Theorem 2.12: Let R be a S-special definite ring, Then (R,+) is a torsion free group if and only if R is a S- strong
special definite ring.

Proof: Suppose that every non trivial subring of R is a S-special definite subring.Let a be a non zero element in R. If
aR={0}, then by assumption aR is a S-special definite subring of R, by Theorem 2.1, for some beR, ab is an element of
infinite order with respect to addition. This implies that a is an element of infinite order with addition, sinceif ma=0, for
some me Z", then m(ab)=(ma)b=0b=0, which is acontradiction. If aR= {0}, then H= {ma; me Z) is a S-special definite
ring, so byTheorem 2.1, for some ke Z", ka is an element of infiniteorder with respect to addition, consequently a is an
element ofinfinite order with respect to addition since if ma=0, for someme Z *, then m(ka)=k(ma) =k0=0, which is
acontradiction with ka is anelement of infinite order with addition. Conversely suppose that (R,+) is a torsion free
group. Then everynon trivial subring containsan element of infinite order with respect to addition. By Theorem 2.1,
every non trivial subring is a S-special definite subring. So R is a S- strong special definite ring.

The following example illustrates Theorem 2.12,

Examples 2.13:

1. Zx1Z isa S-special definite ring and (Z x Z, +) is a torsion free group, then by Theorem 2.12, Zx Z isa S- strong
special definite ring.

2. (ZxZp+,.) is a S-special definite ring and (Z xZ,, +) is not torsion free group, then by Theorem 2.12, (ZxZ,,+,.) is
notasS - strong special definite ring.

We would like to mention that the property of being an S - ring and an S-special definite ring, are independent asit is
shown in the following example.

Examples2.14:

(1) The infinite direct sum ®Zp of the rings Zp, p runs over all prime numbers, is a S-ring but is not a S-special
definite ring.

(2) (Z,+,.) is a S-special definite ring but is not a S-ring.

Theorem 2.15: Let R be just a non zero subring of a field F, Then R is a S-special definite ring if and only if F is a
field of characteristic zero.
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Proof: Suppose that F is a field of characteristic zero and let 0= x eR. Then n.x#0, for all ne Z", since if n.x=0, for
some ne Z*, then (n.x) a=0, for all a eF then x. na=0, but x0 and F has no zero divisor, thenn.a=0, for all a eF which
is a contradiction with F is a field of characteristic zero.Thus xeR and n.(x)}#0, for all ne Z", thenR isa S-special
definitering.

Conversely suppose that R is a S-special definite ring. ThenbyTheorem 2.1, there exists acRcF such that naz0, for all
ne Z"*. Hence F is a field of characteristic zero.

The following example illustrates Theorem 2.15,

Examples 2.16:
1-(Z,+,.)is just subring of the field (Q,+,.) whose characteristicis zero, which is S-specialdefinite ring.
2- (Zp[X], +, .) is just subring of the field Zp(x) whose characteristic is p, which is not S-special definite ring.

3.5 - SPECIAL DEFINITEFIELDS

In this section we study S -special definite fields. We show that a finite field can not be S - Special definite field. We
give many characterizations of S - special definite fields. It is shown that every field of characteristic zero is a S-
special definite field. Moreoverwe study S - special definite substructures such as S - specialdefinite subfields and S-
special definite prime fields and westudy also S - definitespecial fields. It is shown that a field F is a S- definite special
fieldif and only if F is of characteristic zero.

Proposition 3.1: A finite field can not be S-special definite field.

Proof: Let F be a finite field and R beasubring of F. Then R-{O}is closed under multiplication. Then (R-{0},.) is a
finite semigroup, whichsatisfies cancelation laws. Hence by Theorem 1.1, (R-{0}, . ) is a group, thus(R, +, . ) is a field,
which means that F is not a S-special definite field.

Theorem 3.2: Every field of characteristic zero is a S-special definite field.

Proof: Let F be a field of characteristic zero. Then F contains a subring isomorphic to Z.Hence F is a S-special
definitefield.

Now we give a necessary and sufficient condition under whicha field of positive characteristic is S-special definite
field.

Theorem 3.3: Let F be a field of characteristic p. Then F is a S-special definite fieldif and only if F is not an algebraic
extension of Z,,.

Proof: Suppose that F is not an algebraic extension over Z, . Then there exists xeF such that x is transcendental over
Z, Let R={ag+ a;x+...+ ax X : ajeZyand keZ'}. Then R is a ring. 1.xe R which has no inverse in R, since if 1.x has
an inversein R, then there exists ag+ a;x+a,x’+...+ a,x"eR such that(1.x )( ag+ a;x+...+ a, xX")=1. Then we get -1+ ax+
...+ a, X"™*=0, which is a contradiction with x is transcendental over Z,. HenceR isjust a ring and F is S-special definite
field.

Conversely suppose that F is S-special definite field which is analgebraic extension over Z,. If R is any subring of F
and a is a non zero element of R, thena is algebraic over Z, then Z(a) is a finite field .Suppose Z,(a) contains n
elements, then (Z,(a)-{0}, .) is a cyclic group oforder n-1, then a™'=1, then a'= a"?e R, then every non zero element
of R has inverse in R. Therefore R is a field, then every subring of F is a subfield, so F cannot be S-special definite
field, which is a contradiction with assumption F is S-special definite field. ThenF is not analgebraicextension over Zj,.

Examples3.4:

1. Z,(x) is afield of characteristic p which is a S-special definite field sinceit contains Z,[x] , which is just a ring.
2. The algebraic closure of Z is an algebraic extension of Z,, then it is not a S-special definite field.

3. (R,+,.) is S-special definite field, since it contains (Z,+,.).

4. No finite field is a S-special definite field.

The following theorem gives another characterization of S-special definite fields.

Theorem 3.5: Let F be a field of characteristic p. Then F is a S-special definite fieldif and only if (F - {0},.) is not a
torsion group.
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Proof: Suppose that F is a S-special definite field. Then F has a subringR which is not a subfield. So (R-{0},.) is just a
semigroup, then there exists an element a in R-{0} such that a has no inversein R-{0}, if a is of finite order with respect
to multiplication, thus thereexists ne Z* such that a" = 1, so a a"'= 1, thus a’= a"*e R-{0},which is a contradiction
with a has no inversein R-{0}.This means that (R-{0}, . ) contains an element of infinite order. Hence (F -{0},.) is not
a torsion group.

Conversely suppose that (F -{0}, . ) is not a torsion group, then there exist acF such that a is an element of infinite
order with respect to multiplication. We claim that a is transcendental over Z, . If a is algebraic over Z,, then Z,(a) is a
finite fieldof order n. Then (Z,(a)-{0}, .) is a group of order n-1, then 1=a"" which is a contradiction. Then F is
notalgebraic extension over Z,, then F is S-special definitefieldby Theorem 3.3,

Theorem 3.6: If F is a field and R is just a subring of F, then R is an infinite set containing an element of infinite order
with respect to multiplication.

Proof: Let F be a field and R be a subring of F which is not a field. If R is a finite set, then R is a finite ring which
satisfies cancelation laws. Then by Theorem 1.2, R is a field, which is a contradiction with assumption R is not a
field.So R isan infinite set.

Now suppose that every element of R is of finite order with respect to multiplication. Since R is just a ring, then there
exists an element a=0 in R such that a has no inverse in R, but a is of finite orderwith respect to multiplication, hence
there exists ne Z* such that a" = 1, so a a™'= 1, thus a*= a™*eR, which is a contradiction. This means that R contains
an element of infinite order with respect to multiplication.

Proposition 3.7: Every field can be imbedded in a S-special definite field.

Proof: Let F be a field. Then F(x) ={f(x)/g(x); f(x), g(X)eF[x] and g(x)# 0} is a S-special definite field since it
contains the ring F[x]. So, F is imbedded in F(x) , which is a S-specialdefinite field.

Theorem 3.8: Let F be a field. If F is a S-special definite field, then F containsan infinite countable numberof subrings
which are not field.

Proof: Let F be a S-special definite field. Then there exists R — F such that R is justa ring. Hence there exists x € R
such that xR < R, since (if XR = R for every non zero element xe R. Then by Theorem 1.3, R is division ring, but R is
a commutative ring, so R is a field which is acontradiction with R is just aring ). If xR contains the identity 1 (identity
of a ring equal the identity of extension field). i.e. 1exR, then there exists x, € R such that xx;= 1, so x* = x,e R, thus
XR =R, since (If ye R, theny =x (x'y)e xR, thusR = xR but xR c R, thus x R =R) which is a contradiction with
X RcR, then xR does not contain the identity element. Hence x R is just a ring, which is an infinite set (If x R is afinite,
therefore xR is a finite ringand has no zero divisors, then by Theorem 1.2, x R is a field).Then for every justa ring
Rthereexists x € R such that R;= x R is justa ring which is an infinite set and R;c R. By the same mannerone can show
the existence of asubring R,c Rywhich is not a field, then F contains an infinitecountable number of subringswhich
arenot field.

Theorem 3.9: Let F be a S-special definite field. Then every subfield of F is a S-special definite subfield if and only if
F is a field of characteristic zero.

Proof: Suppose that F is a field of characteristic zero and K is a subfield of F. Then K is a field of characteristic zero
and by Theorem 3, 2 K is a S-special definite subfield. Therefore everysubfield of F is a S-special definite subfield.

Conversely, suppose that every subfield of F is S-special definite subfield and F is a field of characteristic p, then F
containsa subfield (Zp, +, . ) but (Zp, +, .) is not S-special definite field whichis a contradiction with assumption that
every subfield of F is a S-specialdefinite subfield, then F is a field of characteristic zero. It is clear that the only S-
special definite prime field ofcharacteristic zero is the field of rational numbers but it has no S-special definiteprime
field of prime characteristic as it is shown in thefollowing theorem.

Theorem 3.10: There is no S-special definite prime field of characteristic p.

Proof: Let F be a S-special definite field of characteristic p. ByTheorem 3.3, F is notan algebraic extension over Zj, that
is there exists xeF such thatxis transcendental over Z, then erp(xz), since (if XGZP(XZ), then x= ( ag*+ aX°+...+ ap
X2") 1( bt box?+...+ by X*) where by 0 for some i, then( box+ bx+...+ by X2™)- ((ag+ ax?+...+ ay x¥)=0, hencex
is algebraic over Z, which is a contradiction), then Zp(xz) < F. Since x is transcendental over Z,, then xzeZp(xz) isa
transcendental over Z,, thus by Theorem 3.3, Zp(xz)c F is a S-special definite subfield of F, hence F can not be S-
special definite prime field. Then there is noS-special definite prime field of characteristic p.
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Theorem 3.11: A field of characteristic zero is a S-definite special field.

Proof : Let F be a field of characteristic zero. Let S={ n.1; n eZ'}U{0}. Clearly S is a commutative semiring. For n.1,
m le S, if n 1+m 1=0 where n,m €Z", then (n +m) 1=0, implies (n +m) =0 since F is a field of characteristic zero, so
n=m=0, if n 1m 1=0 where n,m €Z", then (n m) 1=0, then (n m) =0, sinceF is a field of characteristic zero, so n=m=0,
thus S is a semifield, consequently F is a S-definite special field.

Theorem 3.12: A field of characteristic p is not a S-definite special field.

Proof : Suppose F is a S-definite special field of characteristic p and let S cF be a semifield of F. Then for every
element 0= ae S, we have p a=0, so a+ (p-1) a=0, hence a=0 and (p-1) a=0 which is a contradiction with a #0, then F is
not a S-definite special field. From Theorem 3.11, and Theorem 3.12, we deduce a necessary and sufficient condition
under which a field is S- definite special field.

Corollary3.13: Let F be a field. Then F is a S- definite special field if and only if F is a field of characteristic zero.
From Corollary 3.13, and Theorem 3.2 we deduce that every S-definite special field is a S-special definite field but the
converse is not true in general as Zy(x) is a field of characteristic p which is a S-special definite field,since it contains
the ring Z,[x] . But Z,(x) is not a S-definite special field.
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