# Research

## Available online through www.rjpa.info ISSN 2248 - 9037

## Birkoff Centre of a C-algebra

## S. Kalesha Vali\*, P. Sundarayya and Ch. S. Naga Raja Rao

Department of Mathematics, GITAM University, Visakhapatnam, Andhra Pradesh, India

E-mail: vali312@gitam.edu, psundarayya@yahoo.co.in

(Received on: 30-05-11; Accepted on: 17-06-11)

------

#### **ABSTRACT**

**T**he concept of the Birkoff centre of a Semi group with 0 and 1 was introduced by U.M. Swamy and G.S.N. Murthy [4] and proved that it is a Boolean algebra. This concept is extended to a C-algebra with T. It is proved that Bir A, the Birkoff centre of a C-algebra A is itself a C-algebra. For any element  $a \in \mathcal{B}(A)$  we defined  $S_a$  and proved that it is a C-algebra.

Key words: C-algebra, Centre, Birkoff centre, Boolean algebra.

AMS Mathematics subject classification (2000): 03G25(03G05, 08G05)

\_\_\_\_\_

#### INTRODUCTION:

In [2] Fernando Guzman and Craig C. Squier introduced the variety of C-algebras as the variety generated by the three element algebra  $C = \{T, F, U\}$  with the operations A, V and 'of type (2,2,1), which is the algebraic form of the three valued conditional logic. They proved that C and the two element Boolean algebra  $B = \{T, F\}$  are the only sub directly irreducible C-algebras and that the variety of C-algebras is a minimal cover of the variety of Boolean algebras. Later U.M.Swamy et.al., in [6] defined different partial orders on a C-algebra and studied their properties and gave a number of equivalent conditions in terms of this partial ordering for a C-algebra to become a Boolean algebra and in [5], introduced the concept of the Centre  $B(A) = \{a \in A \mid a \lor a' = T\}$  of a C-algebra A and proved that B(A) is a Boolean algebra with induced operations on A. Let us recall that S is a Semi group and there exists 0,1 such that S of a C-algebra with S if there exists Semi groups S and S with 0 and 1 and an isomorphism S onto S is called Birkoff central element of S if there exists Semi groups S and S with 0 and 1 and an isomorphism S onto S which maps S onto (0,1). The set of all Birkoff central elements of S is called Birkoff centre of S. This concept is extended to a C-algebra with S and proved that the set of all central elements of a C-algebra with S is itself a C-algebra. For any element S we defined S and proved that it is a C-algebra.

## 1. C-algebra:

In this section we recall the definition of a C-algebra and some results from [2], [5] and [6]. Let us start with the definition of a C-algebra.

**Definition 1.1:** [2] By a C-algebra we mean an algebra of type (2, 2, 1) with binary operations  $\land$  and  $\lor$  and unary operation 'satisfying the following identities.

```
(1) x'' = x

(2) (x \wedge y)' = x' \vee y'

(3) (x \wedge y) \wedge z = x \wedge (y \wedge z)

(4) x \wedge (y \vee z) = (x \wedge y) \vee (x \wedge z)

(5) (x \vee y) \wedge z = (x \wedge z) \vee (x' \wedge y \wedge z)

(6) x \vee (x \wedge y) = x

(7) (x \wedge y) \vee (y \wedge x) = (y \wedge x) \vee (x \wedge y).
```

**Example 1.2:** [2] The three element algebra  $C = \{T, F, U\}$  with the operations given by the following tables is a Calgebra.

S. Kalesha Vali\*, P. Sundarayya and Ch. S. Naga Raja Rao / Birkoff Centre of a C-algebra / RJPA- 1(3), June-2011, Page: 71-76

| Λ | Т | F | U |
|---|---|---|---|
| Т | T | F | U |
| F | F | F | F |
| U | U | U | U |

| V | T | F | U |
|---|---|---|---|
| T | T | T | Т |
| F | T | F | U |
| U | U | U | U |

| X | X, |
|---|----|
| Т | F  |
| F | T  |
| U | U  |

**Note 1.3:** [2] The identities 1.1(1), 1.1(2) imply that the variety of C-algebras satisfies all the dual statements of 1.1(2) to 1.1(7).  $\Lambda$  and V are not commutative in C.The ordinary distributive law of  $\Lambda$  over V fails in C. Every Boolean algebra is a C-algebra.

Now we recall some results on C-algebra collected from [2], [5] and [6].

**Lemma 1.4:** Every C-algebra satisfies the following identities:

- (1)  $x \wedge x = x$
- (2)  $x \wedge x' = x' \wedge x$
- $(3) x \wedge y \wedge x = x \wedge y$
- $(4) x \wedge x' \wedge y = x \wedge x'$
- $(5) x \wedge y = (x' \vee y) \wedge x$
- $(6) x \wedge y = x \wedge (y \vee x')$
- $(7) x \wedge y = x \wedge (x' \vee y)$
- $(8) x \wedge y \wedge x' = x \wedge y \wedge y'$

 $(9) (x \lor y) \land x = x \lor (y \land x) \quad (10) x \land (x' \lor x) = (x' \lor x) \land x = (x \lor x') \land x = x.$ 

Duals of the statements in the above lemma are also true in a C-algebra.

**Definition 1.5:** [5] Let A be a C-algebra with T (T is the identity element for  $\Lambda$  in A). Then the Boolean centre of A is defined as the set  $\mathcal{B}(A) = \{ a \in A \mid a \lor a' = T \}$ .  $\mathcal{B}(A)$  is known to be a Boolean algebra under the operations induced by those on A.

**Lemma 1.6:** [5] Every C -algebra with T satisfies the law  $x \wedge F = x \wedge x'$ .

**Lemma 1.7:** [5] If A is a C -algebra with T and  $a \in \mathcal{B}(A)$  then  $a \wedge a' = F$ .

## 2. Birkoff Centre:

In this section we define Birkoff centre of a C-algebra and we shall prove various properties. First let us start with the following definition of Birkoff central element.

**Definition 2.1:** Let A be a C-algebra with  $\Lambda$ -identity T. An element  $a \in A$  is said to be Birkoff central element of a C-algebra A if there exists C-algebras  $A_1$  and  $A_2$  with T and an isomorphism  $f: A \to A_1 \times A_2$  such that  $f(a) = (T_1, F_2)$ .

**Definition 2.2:** The set of all Birkoff central elements of a C-algebra A is called Birkoff centre of A and is denoted by Bir A.

**Lemma 2.3:** Let A be a C-algebra with T. Then  $a \in Bir A \Rightarrow a' \in Bir A$ .

**Proof:** Let  $a \in Bir A$  then there exist C-algebras  $A_1$ ,  $A_2$  and an isomorphism  $\alpha: A \to A_1 \times A_2$  such that  $\alpha(a) = (T_1, F_2)$ .

Now define  $g: A \to A_2 \times A_1$  such that  $g(x) = (x_2, x_1)$  whenever  $\alpha(x) = (x_1, x_2)$ .

Let  $x, y \in A$  such that  $\alpha(x) = (x_1, x_2)$ ,  $\alpha(y) = (y_1, y_2)$ . Then  $\alpha(x \land y) = (x_1 \land y_1, x_2 \land y_2)$ .

Now,  $g(x \land y) = (x_2 \land y_2, x_1 \land y_1) = (x_2, x_1) \land (y_2, y_1) = g(x) \land g(y)$ .

Similarly, we can prove  $g(x \lor y) = g(x) \lor g(y)$ .

To show g(x') = [g(x)]'. Let  $\alpha(x) = (x_1, x_2)$ . Then  $g(x) = (x_2, x_1)$ .

 $\alpha(x) = (x_1, x_2)$ 

S. Kalesha Vali\*, P. Sundarayya and Ch. S. Naga Raja Rao / Birkoff Centre of a C-algebra / RJPA- 1(3), June-2011, Page: 71-76

$$\Rightarrow (\alpha(x))' = (x_1, x_2)' = (x_1', x_2')$$

$$\Rightarrow \alpha(x') = (x_1', x_2')$$
 (since  $\alpha$  is a homomorphism)
$$\Rightarrow g(x') = (x_2', x_1') = (x_2, x_1)' = (g(x))'$$

Therefore g is a homomorphism. Also  $\alpha(a') = (\alpha(a))' = (T_1, F_2)' = (F_1, T_2)$ .

Then  $g(a') = (T_2, F_1)$ . Thus  $a' \in Bir A$ . Clearly g is bijective. Therefore g is an isomorphism.

**Lemma 2.4:** Let A be a C -algebra and  $t \in A$  then  $tA = \{t \land \alpha \mid \alpha \in A\}$  is itself a C - algebra by induced operations  $\land$  and  $\lor$  of A and the unary operation defined by  $(t \land \alpha)^* = t \land \alpha'$ . Proof is a routine verification.

**Lemma 2.5:** Bir A is a C-algebra.

**Proof:** Let  $a, b \in Bir A$ . Then there exist C-algebras  $A_1, A_2$  and  $A_3, A_4$  with T and isomorphisms  $f: A \to A_1 \times A_2$  such that  $f(a) = (T_1, F_2)$  and  $g: A \to A_3 \times A_4$  such that  $g(b) = (T_3, F_4)$ .

Now we have to prove that  $a \land b \in Bir A$  that is we have to find an isomorphism  $h: A \to A_5 \times A_6$  such that  $(a \land b) = (T_5, F_6)$ . Let  $g(a) = (t_3, t_4)$  where  $t_3 \in A_3$  and  $t_4 \in A_4$ . Now put  $A_5 = t_3 A_3$  where  $t_3$  is meet identity in  $A_3$ ,  $t_3$  is join identity and  $t_3$ ,  $t_3$ , and  $t_4 \in A_4$ . By lemma 2.4,  $t_3$ ,  $t_3$  is a C-algebra with  $t_4$  is also put  $t_4$  and  $t_4$  is also a C-algebra with meet identity  $t_6 = (t_4, t_2)$ ,  $t_6 = (t_4, t_4)$ ,  $t_4$ ,  $t_4$ ,  $t_5$ .

For any  $x \in A$ , let  $f(x) = (s_1, s_2)$  and  $g(x) = (x_3, x_4)$  where  $x_3 \in A_3, x_4 \in A_4$  and  $s_1 \in A_1, s_2 \in A_2$ . Now define  $h: A \to A_5 \times A_6$  by  $h(x) = (t_3 \land x_3, (t_4 \land x_4, s_2))$ , for any  $x \in A$ . Then h is well defined.

Let 
$$f(y) = (r_1, r_2)$$
 and  $g(y) = (y_3, y_4)$ . Then  $f(x \land y) = (s_1 \land r_1, s_2 \land r_2)$ ,

$$g(x \land y) = (x_3 \land y_3, x_4 \land y_4), f(x') = (s'_1, s'_2) \text{ and } g(x') = (x'_3, x'_4).$$

$$h(x \wedge y) = (t_3 \wedge x_3 \wedge y_3), (t_4 \wedge x_4 \wedge y_4, s_2 \wedge r_2))$$

$$= (t_3 \wedge x_3 \wedge t_3 \wedge y_3), (t_4 \wedge x_4 \wedge t_4 \wedge y_4, s_2 \wedge r_2)) \text{ (by lemma 1.4(3))}$$

$$= (t_3 \wedge x_3, (t_4 \wedge x_4, s_2)) \wedge (t_3 \wedge y_3, (t_4 \wedge y_4, r_2))$$

$$= h(x) \wedge h(y)$$

Now 
$$h(x') = (t_3 \wedge x'_3, (t_4 \wedge x'_4, s'_2))$$
 (since  $(t_3 \wedge x_3)^* = t_3 \wedge x'_3$ )  
=  $(x_3^*, (x_4^*, s'_2))$   
=  $(h(x))'$ 

$$h(x \lor y) = (t_3 \land (x_3 \lor y_3), (t_4 \land (x_4 \lor y_4), s_2 \lor r_2))$$

$$= ((t_3 \land x_3) \lor (t_3 \land y_3)((t_4 \land x_4) \lor (t_4 \land y_4), s_2 \lor r_2))$$

$$= (t_3 \land x_3, (t_4 \land x_4, s_2)) \lor (t_3 \land y_3, (t_4 \land x_4, r_2))$$

$$= h(x) \lor h(y)$$

Therefore h is a homomorphism.

To show h is one-one, first we prove  $h(a \wedge b) = (T_5, F_6)$ .

We have 
$$f(a) = (T_1, F_2)$$
,  $g(a) = (t_3, t_4)$ ,  $g(b) = (T_3, F_4)$ ,  $f(b) = (n_1, n_2)$ .

Now 
$$h(a \land b) = h(a) \land h(b)$$
 (since  $h$  is a homomorphism)  
=  $(t_3 \land t_3, (t_4 \land t_4, F_2)) \land (t_3 \land T_3, (t_4 \land F_4, n_2)) = (t_3, (t_4 \land F_4, F_2))$   
=  $(t_3, t_4 \land t_4', F_2)$  (since by Lemma 1.5)  
=  $(T_5, F_6)$ 

Let  $x, y \in A$  such that h(x) = h(y). Then  $t_3 \wedge x_3 = t_3 \wedge y_3$ ,  $t_4 \wedge x_4 = t_4 \wedge y_4$  and  $s_2 = r_2$ .

Now 
$$g(a) \wedge g(x) = (t_3, t_4) \wedge (x_3, x_4)$$
  
=  $(t_3 \wedge x_3, t_4 \wedge x_4)$   
=  $(t_3 \wedge y_3, t_4 \wedge y_4)$   
=  $g(a) \wedge g(y)$ 

S. Kalesha Vali\*, P. Sundarayya and Ch. S. Naga Raja Rao / Birkoff Centre of a C-algebra / RJPA- 1(3), June-2011, Page: 71-76 Since g is a homomorphism,  $g(a \land x) = g(a \land y)$ 

```
\Rightarrow a \land x = a \land y \qquad \text{(since } g \text{ is one-one)}
\Rightarrow f(a \land x) = f(a \land y) \qquad \text{(since } f \text{ is well defined)}
\Rightarrow f(a) \land f(x) = f(a) \land f(y) \qquad \text{(since } f \text{ is a homomorphism)}
\Rightarrow (T_1, F_2) \land (s_1, s_2) = (T_1, F_2) \land (r_1, r_2)
\Rightarrow (T_1 \land s_1, F_2 \land s_2) = (T_1 \land r_1, F_2 \land r_2)
\Rightarrow (s_1, F_2) = (r_1, F_2)
\Rightarrow s_1 = r_1, s_2 = r_2
\Rightarrow (s_1, s_2) = (r_1, r_2)
\Rightarrow f(x) = f(y)
\Rightarrow x = y \qquad \text{(since } f \text{ is one-one)}
```

Therefore *h* is one-one.

Let  $(x, y) \in A_5 \times A_6$ . Then  $(x, y) = (t_3 \land x_3, (t_4 \land x_4, s_2))$  for some  $x_3 \in A_3, x_4 \in A_4, s_2 \in A_2$ .

Since,  $t_3 \wedge x_3 \in t_3$   $A_3 \subseteq A_3$ ,  $(t_3 \wedge x_3, t_4 \wedge x_4) \in A_3 \times A_4$  and g is onto, there exists  $t \in A$  such that  $g(t) = (t_3 \wedge x_3, t_4 \wedge x_4)$ .

Now 
$$g(a \wedge t) = g(a) \wedge g(t)$$
  
=  $(t_3, t_4) \wedge (t_3 \wedge x_3, t_4 \wedge x_4)$   
=  $(t_3 \wedge t_3 \wedge x_3, t_4 \wedge t_4 \wedge x_4)$   
=  $(t_3 \wedge x_3, t_4 \wedge x_4)$   
=  $g(t)$ 

Therefore  $g(a \wedge t) = g(t)$ 

 $\Rightarrow a \land t = t \qquad \text{(since } g \text{ is one-one)}$   $\Rightarrow f(a \land t) = f(t) \qquad \text{(since } f \text{ is well defined)}$   $\Rightarrow f(a) \land f(t) = f(t) \qquad \text{(since } f \text{ is a homomorphism)}$   $\Rightarrow (T_1, F_2) \land (y_1, y_2) = (y_1, y_2) \qquad \text{(since } t \in A)$   $\Rightarrow f(t) = (y_1, y_2)$   $\Rightarrow (T_1 \land y_1, F_2 \land y_2) = (y_1, y_2)$   $\Rightarrow (y_1, F_2) = (y_1, y_2)$   $\Rightarrow y_2 = F_2$ (2)

Now,  $y_1 \in A_1$  and  $s_2 \in A_2$  then  $(y_1, s_2) \in A_1 \times A_2$ . Since f is onto there exists  $n \in A$  such that  $f(n) = (y_1, s_2)$ .

Now 
$$f(a \land n) = f(a) \land f(n)$$
  
=  $(T_1, F_2) \land (y_1, s_2)$   
=  $(T_1 \land y_1, F_2 \land s_2)$   
=  $(y_1, F_2)$   
=  $f(t)$  (by (2))

Since f is one-one  $a \wedge n = t$  and g is well defined  $g(a \wedge n) = g(t)$  (3)

Also 
$$n \in A \Rightarrow g(n) = (z_1, z_2)$$
  
 $(t_3 \land t_3 \land x_3, t_4 \land t_4 \land x_4) = g(a \land t)$   
 $= g(t)$  (since by (1))  
 $= g(a \land n)$  (since by (3))  
 $= g(a) \land g(n)$  (since g is a homomorphism)  
 $= (t_3, x_4) \land (z_1, z_2)$   
 $= (t_3 \land z_1, t_4 \land z_2).$ 

Therefore  $t_3 \wedge t_3 \wedge x_3 = t_3 \wedge z_1$  and  $t_4 \wedge t_4 \wedge x_4 = t_4 \wedge z_2$  (4)

Now, 
$$h(n) = (t_3 \wedge z_1, (t_4 \wedge z_2, s_2))$$
  
=  $(t_3 \wedge t_3 \wedge x_3, (t_4 \wedge t_4 \wedge x_4, s_2))$  (since by (4))  
=  $(t_3 \wedge x_3, (t_4 \wedge x_4, s_2))$   
=  $(x, y)$ 

S. Kalesha Vali\*, P. Sundarayya and Ch. S. Naga Raja Rao / Birkoff Centre of a C-algebra / RJPA- 1(3), June-2011, Page: 71-76 Therefore h is onto. Since  $a, b \in Bir A$  imply  $a \land b \in Bir A$  and by Lemma 2.3,  $a \in Bir A \Rightarrow a' \in Bir A$  also  $a \lor b$  also belong to Bir A. Therefore Bir A is sub algebra of a C-algebra A and hence Bir A is a C-algebra.

Let us recall the definition of Centre of a C-algebra defined in [5].

Let A be a C-algebra with identity T. Then the Centre of A is defined as the set

 $\mathcal{B}(A) = \{ a \in A \mid a \lor a' = T \}$ .  $\mathcal{B}(A)$  is known to be a Boolean algebra under the operations induced by those on A.

**Lemma 2.6:** Let  $a \in \mathcal{B}(A)$  then  $a \wedge x = a \Leftrightarrow a \vee x = x$ .

Proof: 
$$a \lor x = (a \land x) \lor x$$
  

$$= (a \lor x) \land (a' \lor x)$$
  

$$= (a \land a') \lor x$$
  

$$= F \lor x$$
 (by Lemma 1.6)  

$$= x$$

Conversely,  $a \wedge x = a \wedge (a \vee x) = a$ .

Now, for any C-algebra A and  $a \in \mathcal{B}(A)$  we define  $S_a$  and prove that it is a C-algebra.

**Lemma 2.7:** Let A be a C-algebra A and  $a \in \mathcal{B}(A)$ . If  $S_a = \{x \in A \mid a \land x = a\}$  then  $S_a$  is a C-algebra.

**Proof:** Let  $x, y, z \in S_a$ . Then  $a \wedge x = a$ ,  $a \wedge y = a$  and  $a \wedge z = a$ 

Since 
$$a \land (x \lor y) = (a \land x) \lor (a \land y) = a \lor a = a, x \lor y \in S_a$$

Also, since 
$$a \wedge (x \wedge y) = (a \wedge x) \wedge (a \wedge y) = a \wedge a = a, x \wedge y \in S_a$$

Define  $x^* = a \lor x'$ . Since  $a \land (a \lor x') = a'$ ,  $a \lor x' \in S_a$ 

$$x^{**} = (a \lor x')^*$$

$$= a \lor (a \lor x')' \qquad \text{(by Definition 1.1(2))}$$

$$= a \lor (a' \land x)$$

$$= a \lor x \qquad \text{(by dual of 1.4(7))}$$

$$= (a \land x) \lor x$$

$$= (a \lor x) \land (a' \lor x \lor x)$$

$$= (a \land a') \lor x$$

$$= x$$

 $(x \land y)^* = a \lor (x \land y)' = a \lor (x' \lor y') = a' \lor x' \lor a \lor y' = x^* \lor y^*.$ 

$$a \wedge [(x \vee y) \wedge z] = a \Rightarrow a \vee [(x \vee y) \wedge z] = (x \vee y) \wedge z$$
 (by Lemma 2.6)

Now, 
$$(x \lor y) \land z = a \lor [(x \lor y) \land z]$$
  

$$= a \lor [(x \land z) \lor (x' \land y \land z)]$$

$$= a \lor (x \land z) \lor (x' \land y \land z)$$

$$= (a \lor x) \land (a \lor z) \lor [(a \lor x') \land (a \lor (y \land z))]$$

$$= (x \land z) \lor [(a \lor x') \land (a \land y) \land (a \lor z)]$$

$$= (x \land z) \lor [x' \land y \land z].$$

Therefore  $S_a$  is a C-algebra.

**Lemma 2.8:** Let A be a C-algebra and  $a \in \mathcal{B}(A)$ . Then  $f_a: A \to S_a$  is an antihomorphism.

**Proof:** Define 
$$f_a: A \to S_a$$
 by  $f_a(x) = a \vee x'$ 

$$f_a(x \land y) = a \lor (x \land y)' = a \lor (x' \lor y') = (a \lor x') \lor (a \lor y') = f_a(x) \lor f_a(y)$$

$$f_a(x \vee y) = a \vee (x' \wedge y') = (a \vee x') \wedge (a \vee y') = f_a(x) \wedge f_a(y)$$

 $[f_a(x)]^* = (a \lor x')^* = a \lor (a \lor x')' = a \lor (a' \land x) = a \lor x = a \lor (x')' = f_a(x').$ Therefore  $f_a: A \to S_a$  is an antihomorphism. S. Kalesha Vali\*, P. Sundarayya and Ch. S. Naga Raja Rao / Birkoff Centre of a C-algebra / RJPA- 1(3), June-2011, Page: 71-76

### **REFERENCES:**

- [1] Birkhoff, G.: Lattice theory, Amer.Math.Soc.Colloquium publications, Vol. 24 (1967).
- [2] Guzman, F. and Squier, C. C.: The algebra of Conditional Logic, Algebra Universalis 27, 88-110 (1990).
- [3] Stanley Burris and Sankappanavar.H. P.: A Course in Universal Algebra, The Millenniumedition.
- [4] Swamy.U. M., Murti ,G. S., Boolean centre of a Semi group, Pure and Applied Mathematica Sciences 13, 1-2(1981).
- [5] Swamy, U. M., Rao, G. C. and RaviKumar, R. V. G.: Centre of a C-algebra, Southeast Asian Bulletin of Mathematics 27, 357-368(2003).
- [6] Swamy, U. M.,Rao. G. C., Sundarayya, P. and Kalesha Vali. S.: *Semilattice structures on a C-algebra*, Southeast Asian Bulletin of Mathematics, 33, 551-561(2009).

\*\*\*\*\*