

# COMMON FIXED POINT THEOREM OF COMPATIBLE OF TYPE (P) USING IMPLICIT RELATION IN FUZZY METRIC SPACE

Bijendra Singh & Mahendra Singh Bhadauriya\*

School of Studies in Mathematics, Vikram University, Ujjain (M.P.), India

Vikrant Institute of Technology & Management, Gwalior (M.P), India

(Received on: 17-07-13; Revised & Accepted on: 30-07-13)

## ABSTRACT

In this paper we prove a common fixed print theorem for compatible mapping of type (P) in Fuzzy metric space using implicit relation. Our result modifies the results of M. Koireng et.al. [10].

Mathematical Classification: 54H25, 54E50.

Keywords: Compatible Maps, Fuzzy Metric Spaces, Compatible Maps of Type (P), Implicit Relation.

### INTRODUCTION

The concept of fuzzy sets was introduced initially by Zadeh [17] which laid the foundation of fuzzy mathematics. George and Veeramani In [5] modified the concept of fuzzy metric space introduced by Kramosil and Michalek [9]. They also obtained that every metric space induces a fuzzy metric spaces. Sessa [16] proved a generalization of commutativity. So called weak commutatively. Futher Jungek [8] more generalized commutativity called compatibility in metric space.

In [1] Cho, Sharma et al introduced the concept of semi compatibility in D-metric space. Recently Bijendra Singh *et al* [15] introduced the concept of semi compatible mapping in the context of a fuzzy metric space.

The first important result of compatible mapping was obtained by jungck [8].pathak, chang and cho introduced the concept of compatible mapping of type (P) [12]

Our aim in this paper is to prove some common fixed point theorem of compatible map of type (P) by generalized some interesting result [2] [10].

## 2. PRETIMINARIES AND DEFINATION

**Definition 2.1 [6]:** A binary operation  $*: [0, 1] \times [0, 1] \rightarrow [0, 1]$  is called a continuous t-norm if ([0, 1], \*) is an abelian topological monoid with 1 such that  $a*b \le c*d$ . Whenever  $a \le c$ ,  $b \le d$  for all  $a,b,c,d \in [0,1]$  examples of t-norm are a\*b = ab and  $a*b = \min\{a,b\}$ 

**Definition 2.2 [5]:** the 3-tuple (X, M, \*) is called a fuzzy metric space if X is an arbitrary set, \* is a continuous t-norm and M is a fuzzy set on  $X^2 \times (0, \infty)$ . Satisfying the following conditions:

(1) 
$$M(x, y, t) > 0$$
  
(2)  $M(x, y, t) = 1$  If and only if  $x = y$   
(3)  $M(x, y, t) = M(y, x, t)$   
(4)  $M(x, y, t) * M(y, z, s) \le M(x, z, t + s)$   
(5)  $M(x, y, .) : (0, \infty) \rightarrow [0, 1]$  Is continuous, for all  $x, y, z \in X$  and  $t, s > 0$ 

Let (X,d) be a metric space, and let a \* b = ab or  $a * b = \min\{a,b\}$ . Let  $M(x, y,t) = \frac{t}{t+d(x,y)}$  for all  $x, y \in X$  and t > 0. Then (X, M, \*) is a fuzzy metric space.

**Definition 2.3 [14]:** A sequence  $\{x_n\}$  in a fuzzy metric space  $\{X, M, *\}$  is said to be a Cauchy sequence if and only if for each  $\in > 0, t > 0$ , there exists  $x \in N$  such that  $M(x_n, x_m, t) > 1 - \in$  For all  $n, m \ge x_0$ 

The sequence  $\{x_n\}$  is said to converge to a point x in X iff for each  $\in > 0$ , t > 0 there exists  $x_0 \in N$  such that  $M(x_n, x, t) > 1 - \epsilon$  For all  $n \ge x_0$ 

A fuzzy metric space (X, M, \*) is said to be complete if every Cauchy sequence in it converges to a point in it.

**Definition 2.4 [15]:** A pair of self mappings (A, S) of fuzzy metric space (X, M, \*) is said to be compatible if

 $\lim_{n\to\infty} M(ASx_n, SAx_n, t) \to 1 \forall t > 0$ 

Whenever  $\{X_n\}$  is a sequence in X such that  $\lim_{n \to \infty} Sx_n = \lim_{n \to \infty} Ax_n = x$ , for some  $x \in X$ 

**Definition 2.5 [14]:** A pair (A, S) of self mappings of a fuzzy metric space is said to be semi compatible if  $\lim_{n\to\infty} ASx_n = Sx$  whenever  $\{x_n\}$  is a sequence in X such that  $\lim_{n\to\infty} ASx_n = \lim_{n\to\infty} Sx_n = x$  so (A, S) is semi compatible and  $Ay = Sy \implies ASy = SAy$  by taking  $\{x_n\} = y$  and x = Ay = Sy.

**Proposition 2.1 [2]:** in a fuzzy metric space (X, M, \*) limit of a sequence is unique.

**Proof:** Let  $\{x_n\} \to x$  and  $\{x_n\} \to y$  then  $\lim_{n \to \infty} M(x_n, x, t) = 1 = \lim_{n \to \infty} M(x_n, y, t)$ 

Now  $M(x, y, t) \ge M(x, x_n, t/2) * M(y, x_n, t/2)$  taking Limit  $n \to \infty$ ,  $M(x, y, t) \ge 1*1$ 

i.e. M(x, y, t) = 1 for all t > 0 thus x = y and hence the limit is unique

**Proposition 2.2** [15]: (A, S) is a semi-compatible pair of self maps of a fuzzy metric space (X, M, \*) and S in continuous then (A, S) is compatible.

**Proof:** Consider a sequence  $\{x_n\}$  in X such that  $\{Ax_n\} \to x$  and  $\{Sx_n\} \to x$ , by semi-compatibility of (A, S) we have  $\lim_{n \to \infty} ASx_n = Sx$ . As S is continuous we get  $\lim_{n \to \infty} SAx_n = Sx$ 

Now,  $Lim(SAx_n, ASx_n, t) = M(Sx, Sx, t) = 1$ 

Hence (A, S) is compatible.

Note: Converse is not true.

**Definition 2.6 [12]:** Self mappings A and S of a fuzzy metric space (X, M, \*) is said to be compatible of type (P) if Lim  $\{x_n\} \rightarrow y$  then Lim  $M(AAx_n, SSx, t) = 1$  For all t > 0

Whenever  $\{x_n\}$  is a sequence in X such that  $\lim_{n \to \infty} Ax_n = \lim_{n \to \infty} Sx_n = z$  For some  $z \in X$ .

#### Bijendra Singh & Mahendra Singh Bhadauriya\*/ Common Fixed Point Theorem Of Compatible Of Type (P) Using Implicit Relation In Fuzzy Metric Space/RJPA- 3(7), July-2013.

**Lemma [15]:** let (X, M, \*) be a fuzzy metric space. If there exists  $k \in X$  such that M(x, y, kt)  $\geq$ M(x, y, t/k n) for positive integer n taking limit as  $n \rightarrow \infty$ , M(x, y, kt)  $\geq$ 1 and hence x=y

**Lemma 2.8 [14]:** the only t-norm \* satisfying  $r*r \ge r$  for all  $r \in [0,1]$  is the minimum t-norm, that is,  $a*b = min \{a, b\}$  for all  $a, b \in [0,1]$ 

**Proposition 2.10 [11]:** Let (X, M, \*) be a fuzzy metric space and let A and S be Continuous mappings of X then A and S are compatible if and only if they are Compatible of type (P).

**Proposition 2.11 [12]:** Let (X, M, \*) be a fuzzy metric space and let A and S be Compatible mappings of type (P) and Az=Sz for some  $z \in X$ , then AAz=ASz=SAz=SSz.

**Proposition 2.12 [10]:** Let (X, M, \*) be a fuzzy metric space and let A and S be Compatible mappings of type (P) and let A  $x_n$ , S  $x_n \rightarrow z$  as  $n \rightarrow \infty$  for some  $z \in X$ . Then

(i)  $Lim SSx_n = Az$  For if A is continuous at z,

(ii)  $Lim AAx_n = Sz$  For if S is continuous at z,

(iii) ASz=SAz and Az=Sz if A and S are continuous at z.

### A CLASS OF IMPLICIT RELATION

Let  $\phi$  be the set of all real and continuous from,  $\phi: [0,1]^s \to R$  satisfying the following conditions.

 $(A-1) \varphi$  is non-increasing in second, third, fourth and fifth argument

 $(A-2) \ \varphi(u,v,v,u,v) \ge 0 \implies u \ge v$  $\varphi(u,v,v,v,v) \ge 0 \implies u \ge v$ 

**Example:**  $\varphi(t_1, t_2, t_3, t_4, t_5) = t_1 - Max. \{t_2, t_3, t_4, t_5\}$ 

## **3. MAIN RESULT**

**Theorem 3.1:** Let A, B, S and T be self mappings of a complete fuzzy metric space (X, M, \*) with continuous tnorm defined by  $a * b = \min\{a * b\}\{b\} \in [0,1]$  Satisfying

- (i)  $A(X) \subset T(X), B(X) \subset S(X)$
- (ii) S and T are continuous.
- (iii) Pairs (A, S) and (B, T) are compatible of type (P)
- (iv)  $\exists$  Some  $k \in (0,1)$  such that for all  $x, y \in X, t > 0$ 
  - $\varphi(M(Ax, By, kt), M(Sx, Ty, t), M(Sx, Ax, t), M(Ty, By, kt), M(Ty, Ax, t)) \ge 0$
- (v)  $\forall x, y \in X, M(x, y, t) \rightarrow 1 \text{ As } t \rightarrow \infty$

Then A, B, S and T have a unique common fixed point.

**Proof:** Let  $x_0 \in X$  be any point as  $A(X) \subset T(X)$  and  $S(X) \subset B(X)$ ,  $\exists x_1 \in X$  and  $x_2 \in X$  such hat  $Ax_0 = Tx_1$  and  $Bx_1 = Sx_2$ . Inductively we construct a sequence  $\{y_n\}$  in X such that

 $y_{2n+1} = Ax_{2n} = Tx_{2n+1}$  and  $y_{2n+2} = Bx_{2n+1} = Sx_{2n+2}$ ;  $(y_{2n} = Sx_2n)$  n = 0 1, With  $x = x_{2n}$ ,  $y = x_{2n+1}$  using contractive condition, we get

$$\varphi(M(Ax_{2n}, Bx_{2n+1}, kt), M(Sx_{2n}, Tx_{2n+1}, t), M(Sx_{2n}, Ax_{2n}, t), M(Tx_{2n+1}, Bx_{2n+1}, kt), M(Tx_{2n+1}, Ax_{2n}, t)) \ge 0$$
  
$$\Rightarrow \varphi(M(y_{2n+1}, y_{2n+2}, kt), M(y_{2n}, y_{2n+1}, t), M(y_{2n}, y_{2n+1}, t), M(y_{2n+1}, y_{2n+2}, kt), M(y_{2n+1}, y_{2n+1}, t)) \ge 0$$

$$\Rightarrow \varphi (M(y_{2n+1}, y_{2n+2}, kt), M(y_{2n}, y_{2n+1}, t), M(y_{2n}, y_{2n+1}, t), M(y_{2n+1}, y_{2n+2}, kt), 1) \ge 0$$

Since  $\phi$  is non-increasing in fifth argument therefore,

$$\varphi\left(M(y_{2n+1}, y_{2n+2}, kt), M(y_{2n}, y_{2n+1}, t), M(y_{2n}, y_{2n+1}, t), M(y_{2n+1}, y_{2n+2}, kt), M(y_{2n+1}, y_{2n+1}, t)\right) \ge 0$$

Therefore by (2) property of implicit relation

 $M(y_{2n+1}, y_{2n}, kt) \ge M(y_{2n+1}, y_{2n}, t)$ 

Similarly  $M(y_{2n+1}, y_{2n}, kt) \ge M(y_{2n}, y_{2n-1}, t)$ 

Hence  $M(y_{n+1}, y_n, kt) \ge M(y_n, y_{n-1}, t) \forall n$ 

We show that

 $\lim_{n \to \infty} M(y_{n+p}, y_n, t) = 1 \text{ For all } p \text{ and } t > 0$ 

Now

$$M(y_{n+1}, y_n, t) \ge M(y_n, y_{n-1}, t/k)$$
  

$$\ge M(y_n, y_{n-2}, t/k^2)$$
  

$$\ge \dots$$
  

$$\ge M(y_1, y_0, t/k^n) \to 1, \text{ As } t/k^2 \to \infty \text{ as } n \to \infty$$

Thus the result holds for p = 1. By induction hypothesis suppose that the result hold for p = r, now.

 $M(y_n, y_{n+r+1}, t) \ge M(y_n, y_{n+r}, t/2) * M(y_{n+r}, y_{n+r+1}, t/2) \to 1 * 1 = 1$ 

Thus the result holds for p = r + 1

Hence  $\{y_n\}$  is a Cauchy sequence in X and as X is complete we get  $\{y_n\} \rightarrow z \in X$ . Hence

$$Ax_{2n} \to z, Sx_{2n} \to z \quad \dots \quad (I)$$
$$Tx_{2n+1} \to z, Bx_{2n+1} \to z \dots \quad (II)$$

From proposition and since pairs (A, S) and (B, T) are compatible of type (P) we get

AA 
$$x_{2n} \rightarrow Sz$$
,  $SSx_{2n} \rightarrow Az$ ,  $BBx_{2n+1} \rightarrow Tz$ ,  $TTx_{2n+1} \rightarrow Bz$ 

From contractive condition we get

$$\varphi(M(AAx_{2n}, BBx_{2n+1}, kt), M(SAx_{2n}, TBx_{2n+1}, t), M(AAx_{2n}, SAx_{2n}, t), M(BBx_{2n+1}, TBx_{2n+1}, kt)$$
$$M(AAx_{2n+1}, TBx_{2n}, t)) \ge 0$$

Taking limit as  $n \to \infty$  we get

$$\varphi(M(Sz,Tz,kt),M(Sz,Tz,t),M(Sz,Sz,t),M(Tz,Tz,kt),M(Sz,Tz,t)) \ge 0$$
  
$$\Rightarrow \varphi(M(Sz,Tz,kt),M(Sz,Tz,t),1,1,M(Sz,Tz,t)) \ge 0$$

© 2013, RJPA. All Rights Reserved

#### Bijendra Singh & Mahendra Singh Bhadauriya\*/ Common Fixed Point Theorem Of Compatible Of Type (P) Using Implicit Relation In Fuzzy Metric Space/RJPA- 3(7), July-2013.

Since  $\varphi$  is non increasing in third, fourth argument

$$\Rightarrow \phi(M(Sz,Tz,kt),M(Sz,Tz,t),M(Sz,Tz,t),M(Sz,Tz,kt),M(Sz,Tz,t)) \ge 0$$

$$\Rightarrow M(Sz,Tz,kt) \ge M(Sz,Tz,t)$$

 $\implies$  Sz =Tz (by Lemma)

By From contractive condition

$$\begin{split} \phi(M(Az, BTx_{2n+1}, kt), M(Sz, TTx_{2n+1}, t), M(Az, Sz, t), \\ M(BTx_{2n+1}, TTx_{2n+1}, t), M(TTx_{2n+1}, Az, t) \geq 0 \text{ as } n \to \infty \end{split}$$

$$\phi(M(Az,Tz,kt),M(Sz,Sz,t),M(Az,Tz,t),M(Tz,Tz,kt),M(Az,Tz,t)) \ge 0$$

 $\phi(M(Az,Tz,kt),1,M(Az,Tz,t),1,M(Az,Tz,t)) \ge 0$ 

 $\Rightarrow$  Since  $\phi$  is non-increasing in second and fourth argument

$$\phi(M(Az,Tz,kt),M(Az,Tz,t),M(Az,Tz,t),M(Az,Tz,t),M(Az,Tz,t)) \ge 0$$

$$\Rightarrow M(Az,Tz,kt) \ge M(Az,Tz,t)$$

 $\Rightarrow$  Az = Tz = Sz [By Lemma]

Again from contractive condition

$$\phi(M(Az, Bz, kt), M(Sz, Tu, t), M(Az, Sz, t), M(Tz, Bz, kt), M(Tz, Az, t) \ge 0$$
  

$$\Rightarrow \phi(M(Az, Bz, kt), M(Az, Az, t), M(Az, Az, t), M(Az, Bz, kt), M(Az, Az, t) \ge 0$$
  

$$\Rightarrow \phi(M(Az, Bz, kt), 1, 1, M(Az, Bz, kt), 1) \ge 0$$

Since  $\phi$  is non increasing in second, third and fifth argument

$$\Rightarrow \phi(M(Az, Bz, kt), M(Az, Bz, t), M(Az, Bz, t), M(Az, Bz, kt), M(Az, Bz, t) \ge 0$$

$$\Rightarrow \phi(M(Az, Bz, kt) \ge M(Az, Bz, t))$$

$$\Rightarrow Az = Bz$$

And so  $\implies Az = Tz = Sz = BZ$  and now we show that BZ=z

By contractive condition

$$\phi(M(z, Bz, kt), M(z, Tz, t), M(z, z, t), M(Tz, Bz, kt), M(z, Tz, t)) \ge 0$$

$$\Rightarrow \phi(M(z, Bz, kt), M(z, Bz, t), 1, 1, M(Bz, z, t) \ge 0)$$

Since  $\phi$  is none increasing in third and fifth argument?

$$\phi(M(z, Bz, kt), M(z, Bz, t), M(z, Bz, t), M(z, Bz, t), M(z, Bz, t) \ge 0$$

$$\Rightarrow$$
  $M(z, Bz, kt) \ge M(Bz, z, t)$  {By Lemma}

$$\implies$$
 Bz = z

So we get

$$Az = Bz = Sz = Tz = z$$

Hence z is a common fixed point A, B, S, and T

**Uniqueness:** Let z and z' be two common fixed points of the maps A, B, S and T. Then

$$Az = Bz = Tz = Sz = z$$
 and  $Az' = Bz' = Tz' = Sz' = z'$ 

Using contractive condition, we get

$$\varphi(M(Az, Bz', kt), M(Sz, Tz', t), M(Sz, Az, t), M(Tz', Bz', kt), M(Tz', Az, t) \ge$$
  

$$\Rightarrow \varphi(M(z, z', kt), M(z, z', t), M(z, z, t), M(z', z', kt), M(z', z, t) \ge 0$$
  

$$\Rightarrow \phi(M(z, z', kt), M(z, z', t), M(z, z', t), M(z', z, t), M(z', z, t) \ge 0$$

Since  $\phi$  is none increasing in third and fourth argument so

$$\Rightarrow \varphi(M(z,z',kt),M(z,z',t),M(z,z',t),M(z',z',t) \ge 0$$

- $\Rightarrow M(z, z', kt) \ge M(z, z', t)$  {By Second conducting}
- $\Rightarrow z = z'$  (By Lemma)

Hence z is a unique common fixed point maps A, B, S, T.

**Corollary 3.1:** Let A, B, S and T be self mappings of a complete fuzzy metric space (X, M, \*) with continuous tnorm defined by  $a*b = \min\{a*b\}\{b\} \in [0,1]$  Satisfying I to III.

0

 $\varphi(M(Ax, By, kt), M(Sx, Ty, t), M(Sx, Ax, t), M(Tx, Ay, t)) \ge 0$ 

then A, B, S and T have a unique common fixed point.

**Corollary 3.2:** Let A, B, S and T be self mappings of a complete fuzzy metric space (X, M, \*) with Continuous tnorm defined by  $a * b = \min\{a * b\}\{b\} \in [0,1]$  Satisfying I, ii, iii, v of theorem3.1 and there exist some  $k \in (0,1)$ such that for all  $x, y \in X, t > 0$ 

 $\varphi(M(Ax, By, kt), M(Sx, Ty, t), M(Sx, Ax, t), M(Ty, By, 2t), M(Ty, Ax, t)) \ge 0)$ 

Then A, B, S and T have a unique common fixed point.

**Theorem 3.2:** Let (X, M, \*) be a complete fuzzy metric spaces. S and T have a common fixed point in X if and only if there exist a self mapping A of X such that the following condition is satisfied:

- (i)  $A(X) \subset T(X) \cap S(X)$
- (ii) Pairs (A, S) and (A, T) are compatible of type (P)

(iii)  $\exists k \in (0,1)$  Such that for all  $x, y \in X, t > 0$ 

 $\varphi \Big( M(Ax, Ay, kt), M(Sx, Ty, t), M(Ax, Sx, t), M(Ty, Ay, kt), M(Ty, Ax, t)) \ge 0$ 

#### Bijendra Singh & Mahendra Singh Bhadauriya\*/ Common Fixed Point Theorem Of Compatible Of Type (P) Using Implicit Relation In Fuzzy Metric Space/RJPA- 3(7), July-2013.

Then A, B, S and T have a unique common fixed point.

**Proof:** We shown that the necessity of the conditions (I) - (iii). Suppose that *S* and *T* Have a common fixed point in *X*, say *z*. Then so = z = Tz.

Let Ax = z for all  $x \in X$ . Then we have  $A(X) \subset T(X) \cap S(X)$  and we know that [A, S] and [A, T] are compatible mapping of type (P), in fact A S = SA and AT = TA, and hence the conditions (I) and (ii) are satisfied.

For some  $p \in (0, 1)$ , we get M (Ax, Ay, kt) =1 so

 $\varphi(M(Ax, Ay, kt), M(Sx, Ty, t), M(Ax, Sx, t), M(Ty, Ay, kt), M(Ty, Ax, t)) \ge 0 \text{ for all } x, y \in X, t > 0$ 

And hence condition (iii) is satisfied.

Now for the sufficiency of conditions, let A = B in theorem3.1.then A, S and T

Have a common fixed point in X.

**Corollary 3.3:** Let A, B, S and T be self mappings of a complete fuzzy metric space (X, M, \*) with continuous tnorm Satisfying I to III of theorem 3.2 and

 $\varphi(M(Ax, By, kt), M(Sx, Ty, t), M(Sx, Ax, t), M(Tx, Ay, t)) \ge 0$ 

Then A, B, S and T have a unique common fixed point.

## ACKNOWLEDGEMENT

Authors are thankful to Dr. M. S. Chauhan for their valuable suggestion towards the improvement of this paper.

### REFERENCES

- 1. Cho, Y.J. Sharma, B.K. and Sahu, D.R. 1995, Semi-compatibility and fixed points, Math. Japonica 42(1) 91-98.
- 2. Cho, on common fixed points in fuzzy metric spaces, Inter. Math. Forum, 1 (10) (2006), 471-479.
- 3. Deng Zi- Ke, Fuzzy pseudo metric spaces, J. Math. Anal. Appl.86 (1982), 74-95.
- 4. Erceg.M.A, Metric spaces in Fuzzy set theory, J. Math. Anal. Appl., 69(1979), 205-230.
- 5. A. George and P. Veeramani, on same results of analysis for fuzzy metric spaces, Fuzzy sets and systems, 90 (1997), 365-368.
- 6. Grabiec M., Fixed points in fuzzy metric spaces, Fuzzy Sets and Systems, 27(1988), 385-389.
- 7. G. Jungck, Compatible mappings and common fixed points. Internat. J. Math. And Math. Sci., 9(4), (1986), 771-779.
- 8. Kramosil and J. Machalek, Fuzzy metric and statistical metric spaces, Kybernetika 11 (1975), 336-344.
- 9. M. Koireng and Y. Rohen, Common fixed point theorem of Compatibility of type P in fuzzymetric space, Int. Journal of Math. Analysis, Vol. 6, 2012, no. 4, 181 188.
- 10. O. Kaleva and S. Seikkala, on fuzzy metric spaces, Fuzzy Sets and Systems; 12(1984), 215-229.
- 11. Pathak, Chang, Cho, Fixed point theorems for compatible mappings of type (P), Indian journal of Math. 36(2) (1994), 151-166.
- 12. B. Schweizer and A. Sklar, Statistical metric spaces, Pacific J. Math., 10(1960), 314-334.
- 13. Bijedra Singh and M. S. Chauhan, Common fixed points of compatible maps in fuzzy metric spaces, Fuzzy sets and Systems, 115(2000), 471-475.
- 14. Singh B. and Chouhan, M.S. Common fixed points of compatible maps in fuzzy metric spaces, fuzzy sets and systems, 115, 471-475 (2000).
- 15. S. Sessa, On weak commutativity condition of mappings in fixed point onsiderations, Publ.Inst. Math. Besgrad, 32 (46) (1982) 149-153.
- 16. Zadeh L.A., Fuzzy sets, Inform and Control, 8 (1965), 338-353.

### Source of support: Nil, Conflict of interest: None Declared