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ABSTRACT 
In this paper we prove a common fixed print theorem for compatible mapping of type (P) in Fuzzy metric space using 
implicit relation. Our result modifies the results of M. Koireng et.al. [10]. 
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INTRODUCTION  
 
The concept of fuzzy sets was introduced initially by Zadeh [17] which laid the foundation of fuzzy mathematics. 
George and Veeramani In [5] modified the concept of fuzzy metric space introduced by Kramosil and Michalek [9]. 
They also obtained that every metric space induces a fuzzy metric spaces. Sessa [16] proved a generalization of 
commutativity. So called weak commutatively. Futher Jungek [8] more generalized commutativity called compatibility 
in metric space. 
 
In [1] Cho, Sharma et al introduced the concept of semi compatibility in D-metric space. Recently Bijendra Singh et al 
[15] introduced the concept of semi compatible mapping in the context of a fuzzy metric space. 
 
The first important result of compatible mapping was obtained by jungck [8].pathak, chang and cho introduced the 
concept of compatible mapping of type (P) [12] 
 
Our aim in this paper is to prove some common fixed point theorem of compatible map of type (P) by generalized some 
interesting result [2] [10]. 
 
2. PRETIMINARIES AND DEFINATION 
 
Definition 2.1 [6]: A binary operation *: [0, 1] × [0, 1] →  [0, 1] is called a continuous t-norm if ([0, 1], *) is an 
abelian topological monoid with 1 such that * *a b c d≤ . Whenever a c≤ , b d≤  for all , , , [0,1]a b c d ∈  
examples of t-norm are *a b ab=  and *a b  = min{ , }a b  
 
Definition 2.2 [5]: the 3-tuple (X, M, *) is called a fuzzy metric space if X is an arbitrary set, * is a continuous t-norm 
and M is a fuzzy set on 2 (0, )X × ∞ . Satisfying the following conditions: 
(1) ( , , ) 0M x y t >  
(2) ( , , ) 1M x y t = If and only if x y=  
(3) ( , , ) ( , , )M x y t M y x t=  
(4) ( , , )* ( , , ) ( , , )M x y t M y z s M x z t s≤ +  
(5) ( , ,.) : (0, ) [0,1]M x y ∞ → Is continuous, for all , ,x y z X∈  and , 0t s >  
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Let ( , )X d  be a metric space, and let *a b ab=  or * min{ , }a b a b= . Let ( , , )
( , )
tM x y t

t d x y
=

+
 for all 

,x y X∈  and 0t > . Then ( , ,*)X M  is a fuzzy metric space. 
 
Definition 2.3 [14]: A sequence { }nx  in a fuzzy metric space { , ,*)X M  is said to be a Cauchy sequence if and only 

if for each 0∈> , 0t > , there exists x N∈  such that ( , , ) 1n mM x x t > −∈ For all 0,n m x≥  
 
The sequence { }nx  is said to converge to a point x  in X  iff for each 0∈> , 0t >  there exists 0x N∈  such that 

( , , ) 1nM x x t > −∈ For all 0n x≥  
 
A fuzzy metric space ( , ,*)X M  is said to be complete if every Cauchy sequence in it converges to a point in it. 
 
Definition 2.4 [15]: A pair of self mappings (A, S) of fuzzy metric space ( , ,*)X M  is said to be compatible if 
 

01),,( >∀→
∞→

ttSAxASxMLim nnn  
 
Whenever }{ nx  is a sequence in X such that xAxLimSxLim nnnn

==
∞→∞→

, for some x X∈  

 
Definition 2.5 [14]: A pair (A, S) of self mappings of a fuzzy metric space is said to be semi compatible if 

SxASxLim nn
=

∞→
 whenever { }nx  is a sequence in X such that n nn n

Lim ASx Lim Sx x
→∞ →∞

= =  so (A, S) is semi 

compatible and Ay Sy=  ⇒  ASy SAy=  by taking { }nx y=  and x Ay Sy= = . 
 
Proposition 2.1 [2]: in a fuzzy metric space ( , ,*)X M  limit of a sequence is unique. 
 
Proof: Let { }nx x→  and { }nx y→  then ( , , ) 1 ( , , )n nn n

Lim M x x t Lim M x y t
→∞ →∞

= =  

 
Now ( , , ) ( , , / 2)* ( , , / 2)n nM x y t M x x t M y x t≥  taking Limit ∞→n , ( , , ) 1*1M x y t ≥  
 
i.e. ( , , ) 1M x y t =  for all 0t >  thus x y=  and hence the limit is unique 
 
Proposition 2.2 [15]: (A, S) is a semi-compatible pair of self maps of a fuzzy metric space ( , ,*)X M  and S in 
continuous then ( , )A S  is compatible. 
 
Proof: Consider a sequence { }nx  in X such that { }nAx x→  and{ }nSx x→ , by semi compatibility of ( , )A S  we 

have nn
Lim ASx Sx
→∞

= . As S is continuous we get nn
Lim SAx Sx
→∞

=  

 
Now, ( , , ) ( , , ) 1n nn

Lim SAx ASx t M Sx Sx t
→∞

= =  

 
Hence ( , )A S  is compatible. 
 
Note: Converse is not true. 
 
Definition 2.6 [12]: Self mappings A and S of a fuzzy metric space (X, M, ∗) is said to be compatible of type (P) if 
Lim  { }nx y→  then  ( , , ) 1nn

Lim M AAx SSx t
→∞

= For all t > 0 

Whenever { nx } is a sequence in X such that n nn n
Lim Ax Lim Sx z
→∞ →∞

= =   For some z ∈ X. 
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Lemma [15]: let (X, M, *) be a fuzzy metric space. If there exists k X∈ such that M(x, y, kt) ≥M(x, y, t/k n) for 

positive integer n .taking limit as n → ∞, M(x, y, kt) ≥1and hence x=y 
 
Lemma 2.8 [14]: the only t-norm * satisfying  r*r ≥ r  for all r∈[0,1] is the minimum  t-norm, that is,  a* b = min {a, b}  
for all  a,b ∈[0,1] 
 
Proposition 2.10 [11]: Let (X, M, *) be a fuzzy metric space and let A and S be Continuous mappings of X then A and 
S are compatible if and only if they are Compatible of type (P). 
 
Proposition 2.11 [12]: Let (X, M, *) be a fuzzy metric space and let A and S be Compatible mappings of type (P) and 
Az=Sz for some z∈ X, then AAz=ASz=SAz=SSz. 
 
Proposition 2.12 [10]: Let (X, M, *) be a fuzzy metric space and let A and S be Compatible mappings of type (P) and 
let A nx  , S nx   → z as n →∞ for some z∈ X. Then 

(i) nn
Lim SSx Az
→∞

=   For if A is continuous at z, 

(ii) nn
Lim AAx Sz
→∞

=   For if S is continuous at z, 

(iii) ASz=SAz and Az=Sz if A and S are continuous at z. 
 
A CLASS OF IMPLICIT RELATION  
 
Let φ  be the set of all real and continuous from, :[0,1]s Rϕ →  satisfying the following conditions. 

( 1)A− ϕ  is non-increasing in second, third, fourth and fifth argument 

( 2)A− ( , , , , ) 0u v v u vϕ ≥  ⇒  u v≥  
 ( , , , , ) 0u v v v vϕ ≥  ⇒  u v≥  
 
Example: 1 2 3 4 5 1( , , , , )t t t t t tϕ = − .Max 2 3 4 5{ , , , }t t t t   

 
3. MAIN RESULT 
 
Theorem 3.1: Let A, B, S and T be self mappings of a complete fuzzy metric space ( , ,*)X M  with continuous t-
norm defined by * min{ * }{ } [0,1]a b a b b= ∈  Satisfying 

(i)   ( ) ( )A X T X⊂ , ( ) ( )B X S X⊂   
(ii)   S and T are continuous. 
(iii)  Pairs (A, S) and (B, T) are compatible of type (P) 
(iv) ∃  Some (0,1)k∈  such that for all , , 0x y X t∈ >  

      ( ( , , ), ( , , ), ( , , ),M Ax By kt M Sx Ty t M Sx Ax tϕ ( , , ), ( , , )M Ty By kt M Ty Ax t ) 0≥  

(v)  , , ( , , ) 1x y X M x y t∀ ∈ →  As t →∞  
 
Then A, B, S and T have a unique common fixed point. 
 
Proof: Let 0x X∈  be any point as ( ) ( )A X T X⊂  and ( ) ( )S X B X⊂ , 1x X∃ ∈  and 2x X∈  such hat 

0 1Ax Tx=  and 1 2Bx Sx= . Inductively we construct a sequence { }ny  in X such that 
 

2 1 2 2 1n n ny Ax Tx+ += =  and 2 2 2 1 2 2n n ny Bx Sx+ + += = ; 2 2( )ny Sx n=  n = 0 1, With 2 2 1,n nx x y x += =  using 
contractive condition, we get 
 

2 2 1 2 2 1 2 2 2 1 2 1 2 1 2( ( , , ), ( , , ), ( , , ), ( , , ), ( , , )) 0n n n n n n n n n nM Ax Bx kt M Sx Tx t M Sx Ax t M Tx Bx kt M Tx Ax tϕ + + + + + ≥  
 
⇒  ϕ 2 1 2 2 2 2 1 2 2 1 2 1 2 2 2 1 2 1( ( , , ), ( , , ), ( , , ), ( , , ), ( , , )) 0n n n n n n n n n nM y y kt M y y t M y y t M y y kt M y y t+ + + + + + + + ≥  
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⇒  ϕ 2 1 2 2 2 2 1 2 2 1 2 1 2 2( ( , , ), ( , , ), ( , , ), ( , , ),1) 0n n n n n n n nM y y kt M y y t M y y t M y y kt+ + + + + + ≥  
 
Since φ  is non-increasing in fifth argument therefore, 
 
ϕ 2 1 2 2 2 2 1 2 2 1 2 1 2 2 2 1 2 1( ( , , ), ( , , ), ( , , ), ( , , ), ( , , )) 0n n n n n n n n n nM y y kt M y y t M y y t M y y kt M y y t+ + + + + + + + ≥                                              
 
Therefore by (2) property of implicit relation 
 

2 1 2 2 1 2( , , ) ( , , )n n n nM y y kt M y y t+ +≥  
 
Similarly 2 1 2 2 2 1( , , ) ( , , )n n n nM y y kt M y y t+ −≥  
 
Hence 1 1( , , ) ( , , )n n n nM y y kt M y y t n+ −≥ ∀  
 
We show that 
 

( , , ) 1n p nn
Lim M y y t+→∞

=  For all p and t > 0 

 
Now  
 

1( , , )n nM y y t+  1( , , / )n nM y y t k−≥  

                            
2

2( , , / )n nM y y t k−≥  

              .....≥  

              1 0( , , / ) 1,nM y y t k≥ →  As 2/t k →∞  as n →∞  
 

Thus the result holds for 1p = . By induction hypothesis suppose that the result hold for p = r, now. 
 

1 1( , , ) ( , , / 2)* ( , , / 2)n n r n n r n r n rM y y t M y y t M y y t+ + + + + +≥ 1*1 1→ =  
 

Thus the result holds for 1p r= +  
 
Hence { }ny  is a Cauchy sequence in X and as X is complete we get{ }ny z X→ ∈ . Hence 
 

2 2,n nAx z Sx→ z→      ...   (I) 

2 1 2 1,n nTx z Bx z+ +→ → .... (II) 
 
From proposition and since pairs (A, S) and (B, T) are compatible of type (P) we get 
 
AA 2nx Sz→ , 2nSSx Az→ , 2 1nBBx Tz+ → , 2 1nTTx Bz+ →  
 
From contractive condition we get 
 

2 2 1 2 2 1( ( , , ), ( , , )n n n nM AAx BBx kt M SAx TBx tϕ + + , 2 2 2 1 2 1( , , ), ( , , )n n n nM AAx SAx t M BBx TBx kt+ +  

                                                                                          2 1 2( , , )) 0n nM AAx TBx t+ ≥  
 
Taking limit as ∞→n  we get 
 

( ( , , ), ( , , ), ( , , ), ( , , ), ( , , )) 0M Sz Tz kt M Sz Tz t M Sz Sz t M Tz Tz kt M Sz Tz tϕ ≥  
 
⇒  ( ( , , ), ( , , ),1,1, ( , , )) 0M Sz Tz kt M Sz Tz t M Sz Tz tϕ ≥  
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Since ϕ  is non increasing in third, fourth argument 
 
⇒  0)),,(),,,(),,,(),,,(),,,(( ≥tTzSzMktTzSzMtTzSzMtTzSzMktTzSzMφ  
 
⇒  ),,(),,( tTzSzMktTzSzM ≥  
 
⇒  Sz =Tz (by Lemma) 
 
By From contractive condition 
 

),,(),,,(),,,(( 1212 tSzAzMtTTxSzMktBTxAzM nn ++φ ,                   

                                         0),,(),,,( 121212 ≥+++ tAzTTxMtTTxBTxM nnn  as ∞→n  
 

0)),,(),,,(),,,(),,,(),,,(( ≥tTzAzMktTzTzMtTzAzMtSzSzMktTzAzMφ  
 

0)),,(,1),,,(,1),,,(( ≥tTzAzMtTzAzMktTzAzMφ  
 
⇒  Since φ  is non-increasing in second and fourth argument 
 

0),,(),,,(),,,(),,,(),,,(( ≥tTzAzMtTzAzMtTzAzMtTzAzMktTzAzMφ  
 
⇒  ),,(),,( tTzAzMktTzAzM ≥  
 
⇒  SzTzAz ==  [By Lemma] 
 
Again from contractive condition 
 

0),,(),,,(),,,(),,,(),,,(( ≥tAzTzMktBzTzMtSzAzMtTuSzMktBzAzMφ  
 
⇒  0),,(),,,(),,,(),,,(),,,(( ≥tAzAzMktBzAzMtAzAzMtAzAzMktBzAzMφ  
 
⇒  0)1),,,(,1,1),,,(( ≥ktBzAzMktBzAzMφ  
 
Since φ  is non increasing in second, third and fifth argument 
 
⇒  0),,(),,,(),,,(),,,(),,,(( ≥tBzAzMktBzAzMtBzAzMtBzAzMktBzAzMφ  
 
⇒  ),,(),,(( tBzAzMktBzAzM ≥φ  
 
⇒  BzAz =  
 
And so ⇒  SzTzAz == =BZ and now we show that BZ=z 
 
By contractive condition 
 

),,,(),,,(),,,(( tzzMtTzzMktBzzMφ  0)),,(),,,( ≥tTzzMktBzTzM  
 
⇒  0),,(,1,1),,,(),,,(( ≥tzBzMtBzzMktBzzMφ  
 
Since φ  is none increasing in third and fifth argument? 
 

0),,(),,,(),,,(),,,(),,,(( ≥tBzzMtBzzMtBzzMtBzzMktBzzMφ  
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⇒   ),,(),,( tzBzMktBzzM ≥  {By Lemma} 
 
⇒   Bz = z 
 
So we get 
 
Az Bz Sz Tz z= = = =  

 
Hence z is a common fixed point A, B, S, and T 
 
Uniqueness: Let z  and 'z  be two common fixed points of the maps A, B, S and T. Then 
 
Az Bz Tz Sz z= = = =  and ' ' ' ' 'Az Bz Tz Sz z= = = =  

 
Using contractive condition, we get 
 

( ( , ', ), ( , ', ), ( , , ),M Az Bz kt M Sz Tz t M Sz Az tϕ ( ', ', ), ( ', , ) 0M Tz Bz kt M Tz Az t ≥  
 
⇒  ( ( , ', ), ( , ', ), ( , , ), ( ', ', ), ( ', , ) 0M z z kt M z z t M z z t M z z kt M z z tϕ ≥  
 
⇒  0),,'(),,,'(),,',(),,',(),,',(( ≥tzzMtzzMtzzMtzzMktzzMφ  
 
Since φ  is none increasing in third and fourth argument so 
 
⇒  ( ( , ', ), ( , ', ), ( , ', ), ( ', ', ) 0M z z kt M z z t M z z t M z z tϕ ≥  
 
⇒  ( , ', ) ( , ', )M z z kt M z z t≥  {By Second conducting} 
 
⇒  'z z=     (By Lemma) 
 
Hence z is a unique common fixed point maps A, B, S, T. 
 
Corollary 3.1: Let A, B, S and T be self mappings of a complete fuzzy metric space ( , ,*)X M  with continuous t-
norm defined by * min{ * }{ } [0,1]a b a b b= ∈  Satisfying I to III. 
 

( )( , , ), ( , , ), ( , , ), ( , , ) 0M Ax By kt M Sx Ty t M Sx Ax t M Tx Ay tϕ ≥   
 
then A, B, S and T have a unique common fixed point. 
 
Corollary 3.2: Let A, B, S and T be self mappings of a complete fuzzy metric space ( , ,*)X M  with Continuous t-
norm defined by * min{ * }{ } [0,1]a b a b b= ∈  Satisfying I, ii, iii, v of theorem3.1 and there exist some (0,1)k∈  
such that for all , , 0x y X t∈ >  
 

( ( , , ), ( , , ), ( , , ),M Ax By kt M Sx Ty t M Sx Ax tϕ ( , , 2 ), ( , , )M Ty By t M Ty Ax t ) 0≥ ) 
 
Then A, B, S and T have a unique common fixed point. 
          
Theorem 3.2: Let ( , ,*)X M be a complete fuzzy metric spaces. S and T have a common fixed point in X if and only 
if there exist a self mapping A of X such that the following condition is satisfied: 
(i) ( )A X  ( )T X⊂ ( )S X  
(ii)  Pairs (A, S) and (A, T) are compatible of type (P) 
(iii)∃  (0,1)k∈  Such that for all , , 0x y X t∈ >  

      ( ( , , ), ( , , ), ( , , ),M Ax Ay kt M Sx Ty t M Ax Sx tϕ ( , , ), ( , , )M Ty Ay kt M Ty Ax t ) 0≥  
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Then A, B, S and T have a unique common fixed point. 
 
Proof: We shown that the necessity of the conditions (I) - (iii). Suppose that S and T Have a common fixed point in X, 
say z. Then so = z = Tz. 
 
Let Ax = z for all x∈X.  Then we have A(X) ⊂ T(X) ∩ S(X) and we know that [A, S] and [A, T] are compatible mapping 
of type (P), in fact A S = SA and AT =T A, and hence the conditions (I) and (ii) are satisfied. 
 
For some p∈(0, 1), we get M (Ax, Ay, kt) =1 so 
 

( ( , , ), ( , , ), ( , , ) ,M Ax Ay kt M Sx Ty t M Ax Sx tϕ ( , , ), ( , , )M Ty Ay kt M Ty Ax t ) 0≥  for all , , 0x y X t∈ >  
 
And hence condition (iii) is satisfied. 
 
Now for the sufficiency of conditions, let A = B in theorem3.1.then A, S and T        
 
Have a common fixed point in X.  
 
Corollary 3.3: Let A, B, S and T be self mappings of a complete fuzzy metric space ( , ,*)X M  with continuous t-
norm Satisfying I to III of theorem 3.2 and  
 

( )( , , ), ( , , ), ( , , ), ( , , ) 0M Ax By kt M Sx Ty t M Sx Ax t M Tx Ay tϕ ≥  
 
Then A, B, S and T have a unique common fixed point. 
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