International Research Journal of Pure Algebra -3(8), 2013, 270-275 Available online through www.rjpa.info ISSN 2248-9037

AN IDENTIFICATION OF $S_{6}(2)$

Runshi Zhang*
School of Science, Sichuan University of Science \& Engineering Zigong, 643000, P. R. China
(Received on: 25-07-13; Revised \& Accepted on: 12-08-13)

Abstract

Let G be a group and $\omega(G)$ be the set of element orders of G. Let $k \in \omega(G)$ and s_{k} be the number of elements of order k in G. Let nse $(G)=\left\{s_{k} / k \in \omega(G)\right\}$. In Khatami et al and Liu, the authors proved that $L_{3}(2)$ and $L_{3}(4)$ are unique determined by nse (G). In this note, we prove that if G is a group such that nse $(G)=$ nse $\left(S_{6}(2)\right)$, where $S_{6}(2)$ is the projective sympletic group of degree 6 over fields of order 2 , then $G \cong S_{6}(2)$.

Keywords: Element order, Unitary group, Thompson' problem, Number of elements of the same order.
Mathematics Subject Classification (2000): 20D05, 20D06, 20 D20.

1. INTRODUCTION

We introduce some which may be unfamiliar to the reader. Let $\omega(G)$ denote the set of element orders of G. Let $m_{i}(G):=\mid\{g \in G \mid$ the order of g is $i\} \mid$ (m_{i} for short), be the number of elements of order i, and let nse $(G):=\{$ $\left.m_{i}(G) \mid i \in \omega(G)\right\}$, the set of sizes of elements with the same order. $n_{p}(G)$ denotes the number of Sylow p subgroup of G, namely, $n_{p}(G)=\left|S y l_{p}(G)\right| \cdot \pi(G)$ denotes the set of all prime divisors of $|G|$. We use $a \mid b$ to mean that a divides b; if p is a prime, then $p^{n} \| b$ means $p^{n} \mid b$ but $p^{n+1} \| b . \mathbb{N}=\{1,2,3,4\}$ denotes the set of positive integers. $\pi(G)$ denotes the set of prime divisors of $|G|$ and $|\pi(G)|$ the number of the element of the set $\pi(G)$. nse (G) denotes the number of elements of a given order of G.

For the set $n s e(G)$, the most important problem is related to the Thompson's problem. In 1987, J.G. Thompson put forward the following problem.

Thompson's problem: For each finite group G and each integer $d \geq 1$, let $G(d)=\left\{x \in G \mid x^{d}=1\right\}$. Define G_{1} and G_{2} are of the same order type if and only if $\left|G_{1}(d)\right|=\left|G_{2}(d)\right|, d=1,2,3, \ldots$ Suppose G_{1} and G_{2} are of the same order type. If G_{1} is solvable, is G_{2} necessarily solvable?

It was proved that: Let G be a group and M some simple k_{i}-group, $\mathrm{i}=3$, 4, then $G \cong M$ if and only if $|G|=|M|$, and $n s e(G)=n s e(M)$ (see [7,8]) Comparing the sizes of elements of same order but disregarding the actual orders of elements in $T(G)$ of the Thompson Problem, in other words, it remains only nse (G), whether can it characterize finite simple groups? Up to now, some groups especial for $\operatorname{PSL}(2, q)$, can be characterized by only the set nse (G) (see [3],[5] and [10]). Recent, $L_{3}(4)$ is characterization by $n s e\left(L_{3}(4)\right)$ (see [6]). In this paper, it is shown that projective symplectic group $S_{6}(2)$ can be characterized by $n s e\left(S_{6}(2)\right)$, that is:

* Corresponding author: Runshi Zhang*

School of Science, Sichuan University of Science \& Engineering Zigong, 643000, P. R. China E-mail: zhangrs-75@suse.edu.cn

Main Theorem: Let G be a group. If $n \operatorname{se}(G)=n \operatorname{se}\left(S_{6}(2)\right)$. Then $G \cong n \operatorname{se}\left(S_{6}(2)\right)$.

2. PRELIMINARY

Lemma 2.1: [1] Let G be a finite group and m be a positive integer dividing $|G|$. If, $L_{m}(G)=\left\{g \in G / g^{m}=1\right\}$. then $m\left|\left|L_{m}(G)\right|\right.$

Lemma 2.2: [2] Theorem 9.3.1] Let G be a finite solvable group and $|G|=m n$, where $m=p_{1}^{\alpha_{1}}, \cdots p_{r}^{\alpha_{r}},(m, n)=1$ Let $\pi=\left\{p_{1}, \cdots p_{r}\right\}$ and h_{m} be the number of Hall π-subgroups of G. The $h_{m}=q_{1}^{\beta_{1}} \cdots q_{s}^{\beta_{s}}$ satisfies the following conditions for all $i \in\{1,2, \cdots s\}$:
(1) $q_{i}^{\beta_{i}} \equiv 1\left(\bmod p_{j}\right)$ for some p_{j}.
(2) The order of some chief factor of G is divided by $q_{i}^{\beta_{i}}$

Lemma 2.3: [4] Let G be a finite group and $p \in \pi(G)$ be odd. Suppose that P is a Sylow p-subgroup of G and $n=p^{s} m$ with $(p, m)=1$ If P is not cyclic and $s>1$, then the number of elements of order n is always a multiple of p^{s}.

Lemma 2.4: [10] Let G be a group containing more than two elements. If the maximal number S of elements of the same order in G is finite, then G is finite and $|G| \leq s\left(s^{2}-1\right)$.

The following Lemma is used without referee.
Lemma 2.5: [9] Let G be a finite group, $P \in \operatorname{Syl}_{p}(G)$, where $p \in \pi(G)$. Suppose that G has a normal series K $\triangleleft L \triangleleft G$ and the following statements hold:
(1) $N_{G / K}(P K / K)=N_{G}(P) K / K$.
(2) If $P \leq L$, then $\left|G: N_{G}(P)\right|=\left|L: N_{L}(P)\right|$, namely, $n_{p}(G)=n_{p}(L)$.
(3) If $P \leq L$, then $\left|L / K: N_{L / K}(P K / K)\right| t=\left|G: N_{G}(P)\right|=\left|L: N_{L}(P)\right|$, namely, $n_{p}(L / K)=t=n_{p}(G)=$ $n_{p}(L)$. In particular, $\left|N_{K}(P)\right| t=|K|$.

3. THE PROOF OF MAIN THEOREM

Let G be a group such that $n \operatorname{se}(G)=n \operatorname{se}\left(J_{3}\right)$, and s_{n} be the number of elements of order n. By Lemma 2.4 we have G is finite. We note that $S_{n}=k \phi(n)$, where k is the number of cyclic subgroups of order n. Also we note that if $n>2$, then $\phi(n)$ is even. If $m \in \omega(G)$, then by Lemma 2.1 and the above discussion, we have

$$
\left\{\begin{array}{l}
\phi(m) \mid s_{m} \tag{1}\\
m \mid \sum_{d \mid m} s_{d}
\end{array}\right.
$$

We rewrite the Main Theorem here.

MAIN THEOREM

Let G be a group. If $n \operatorname{se}(G)=n \operatorname{se}\left(S_{6}(2)\right)=\{1,5103,16352,48384,75600,96768,145152,161280,181440$, 207360, 241920, 272160\}, then Then $G \cong S_{6}(2)$.

Proof: We prove the theorem by first proving that $\pi(G) \subseteq\{2,3,5,7\}$, second showing that $|G|=\left|S_{6}(2)\right|$, and so $G \cong S_{6}(2)$.

By (1), $\pi(G) \subseteq\{2,3,5,7,11,13,17,19,127,96769,161281,241921\}$. if $k>2$, then $\phi(k)$ is even, then $S_{2}=5103$, $2 \in \pi(G)$.In the following, we prove that $19 \notin \pi(G)$. If $11 \in \pi(G)$ then by (1), $s_{11}=207360$. If $2 \cdot 11 \in \omega(G)$, then $S_{22} \notin n s e(G)$.Therefore $38 \notin \omega(G)$. Now we consider Sylow 19-subgroup P_{11} acts fixed point freely on the set of elements of order 2 , then $\left|P_{11}\right| \mid s_{2}(=5103)$, a contradiction. So $11 \notin \pi(G)$. Similarly, we can prove that 13 , $17,127,96769,161281$, and $241921 \notin \pi(G)$.

If $2^{a} \in \omega(G)$ then by (1), $\phi\left(2^{a}\right) \mid s_{2^{a}}$ and so $0 \leq a \leq 10$.
If $3^{a} \in \omega(G)$ then $1 \leq a \leq 6$.
If $5^{a} \in \omega(G)$, then $1 \leq a \leq 3$. If $5^{3} \in \omega(G)$ then by (1) $S_{5^{3}} \notin n s e(G)$ since $S_{5^{2}}=181440$.

Therefore $1 \leq a \leq 2$.
If $19^{a} \in \omega(G)$ then $a=1$.
To remove the prime 19 , the fact that the prime 3 belongs to $\pi(G)$ is proved.
Assume that 3 does not belong to $\pi(G)$.

If 5,7 and 19 do not belong to $\pi(G)$, then G is a 2 -group. Hence $1451520+16352 k_{1}+48384 k_{2}+75600 k_{3}+$ $96768 k_{4}+145152 k_{5}+161280 k_{6}+181440 k_{7}+207360 k_{8}+241920 k_{9}+272160 k_{10}=2^{l}$ where $k_{i}, \quad i=1,2$, $\ldots 10$, and I are non-negative integers. But $|\omega(G)|=11$, so the equation has no solution in N .

Let $5 \in \pi(G)$, then $\exp \left(P_{5}\right)=5$ or 25 .
Let $\exp \left(P_{5}\right)=5$, then by Lemma 2.1, $\left|P_{5}\right| \mid 1+s_{5}$ and so $\left|P_{5}\right|=5$. It follows that $n_{5}=s_{5} / \phi(5)=48384 / 4=2^{6} \cdot 3^{3} \cdot 7$ and so $3 \in \pi(G)$, a contradiction.

Let $\exp \left(P_{5}\right)=25$, then $\left|P_{5}\right| \mid 1+s_{5}+s_{25}$ and so $\left|P_{5}\right|=25$. Thus $n_{5}=s_{25} / \phi(5)=181440 / 20=2^{4} \cdot 3^{4} \cdot 7$ and 3 $\in \pi(G)$, a contradiction.

Let $7 \in \pi(G)$, then $\exp \left(P_{7}\right)=7$ or 49 .
Let $\exp \left(P_{7}\right)=7$, then $\left|P_{7}\right| \mid 1+s_{7}$ and so $\left|P_{7}\right|=7$. Thus $n_{7}=s_{7} / \phi(7)=207360 / 62^{8} \cdot 3^{3} \cdot 5$ and so $3 \in \pi(G)$, a contradiction.

Let $\exp \left(P_{7}\right)=49$, then $\left|P_{7}\right| \mid 1+s_{7}+s_{49}$ and so| $P_{7} \mid=49$. Thus $n_{7}=s_{7^{2}} / \phi\left(7^{2}\right)=241920 / 42=2^{7} \cdot 3^{2} \cdot 5$ and so 3 $\in \pi(G)$, a contradiction.

Let $19 \in \pi(G)$,then as $\exp \left(P_{19}\right)=19, n_{19}=s_{19}=75600 / 18$. Therefore $3 \in \pi(G)$, a contradiction.

Therefore $3 \in \pi(G)$. In particularly, if $5 \in \pi(G)$, then $2,3,7 \in \pi(G)$, if $7 \in \pi(G)$, then $2,3,5 \in \pi(G)$, a contradiction.

If $57 \in \pi(G)$, then by lemma $2.157 \mid 1+s_{3}+s_{19}+s_{57}$. and so $s_{57} \notin n s e(G) \$$. It follows that the Sylow 19subgroups of G acts fixed freely on the set of order 3 , and so $\left|P_{13}\right| \mid S_{3}$, a contradiction. Thus $19 \notin \pi(G)$.

Therefore the following two cases are considered :\{2,3\} and $\{2,3,5,7\}$.
Case A: $\pi(G)=\{2,3\}$.
By Lemma 2.1,| $P_{2}| | 1+s_{2}+\cdots s_{10}$ and so $\left|P_{2}\right| \mid 2^{10}$.
It is easy to see that $\exp \left(P_{3}\right)=3,9,27,81,243,729$.
Let $\exp \left(P_{3}\right)=3$, then $\left|P_{3}\right| \mid 1+S_{3}$ and so $\left|P_{3}\right| \mid 9$.If $\left|P_{3}\right|=3$, then $n_{3}=s_{3} / \phi(3)=16352 / 2$ and so $7 \in \pi(G)$, a contradiction. If If $\left|P_{3}\right|=9$, then $1451520+16352 k_{1}+48384 k_{2}+75600 k_{3}+96768 k_{4}+145152 k_{5}+161280 k_{6}+$ $181440 k_{7}+207360 k_{8}+241920 k_{9}+272160 k_{10}=2^{l} \cdot 9$ where $k_{i}, i=1,2, \ldots 10$, and I are non-negative integers, and $0 \leq \sum_{i=1}^{10} k_{i} \leq 25$. Since $1451520 \leq|G|=2^{l} \cdot 9 \mid \leq 1451520+25.272160$, then $\mathrm{I}=14,15,16$, a contradiction as I is at most 10 .

Let $\exp \left(P_{3}\right)=9$, then $\left|P_{3}\right| \mid 1+s_{3}+s_{9}$ and so $\left|P_{3}\right| \mid 27$. If $\left|P_{3}\right|=9$, then $n_{3}=s_{3} / \phi\left(3^{2}\right)$ and so 5 or 7 belongs to $\pi(G)$ a contradiction. If $\left|P_{3}\right|=27$,then $1451520+16352 k_{1}+48384 k_{2}+75600 k_{3}+96768 k_{4}+145152 k_{5}+$ $161280 k_{6}+181440 k_{7}+207360 k_{8}+241920 k_{9}+272160 k_{10}=2^{l} \cdot 27$ where $k_{i}, i=1,2, \ldots 10$, and I are nonnegative integers, and $0 \leq \sum_{i=1}^{10} k_{i} \leq 35$. Since $1451520 \leq|G|=2^{l} \cdot 27 \leq 1451520+35.272160$, then $I=13$, 14 , 15 , a contradiction as I is at most 10 .

Let $\exp \left(P_{3}\right)=27$, then $\left|P_{3}\right| \mid 1+s_{3}+s_{9}+s_{27}$ and so $\left|P_{3}\right| \mid 3^{6}$.If $\left|P_{3}\right|=27$, then 5 or 7 belongs to $\pi(G)$, a contradiction. If $\left|P_{3}\right|=3^{4}$, then $1451520+16352 k_{1}+48384 k_{2}+75600 k_{3}+96768 k_{4}+145152 k_{5}+161280 k_{6}$ $+181440 k_{7}+207360 k_{8}+241920 k_{9}+272160 k_{10}=2^{l} \cdot 81$ where $k_{i}, i=1,2, \ldots 10$, and I are non-negative integers, and $0 \leq \sum_{i=1}^{10} k_{i} \leq 45$.

Since $1451520 \leq|G|=2^{l} \cdot 81 \leq 1451520+45.272160$, then $\mathrm{I}=15,16,17$, a contradiction as I is at most 10 . If $\left|P_{3}\right|$ $=243$, then $I=13,14,15$, a contradiction. If $\left|P_{3}\right|=729$, then $I=11,12,13,14$, a contradiction.

Let $\exp \left(P_{3}\right)=81$, then $\left|P_{3}\right| \mid 1+S_{3}+S_{9}+S_{27}+S_{81}$ and so $\left|P_{3}\right| \mid 3^{7}$.If $\left|P_{3}\right|=81$, then 5 or 7 belongs to $\pi(G)$, a contradiction. If $\left|P_{3}\right|=3^{5}$,then $1451520+16352 k_{1}+48384 k_{2}+75600 k_{3}+96768 k_{4}+145152 k_{5}+161280 k_{6}$ $+181440 k_{7}+207360 k_{8}+241920 k_{9}+272160 k_{10}=2^{l} \cdot 243$ where $k_{i}, i=1,2, \ldots 10$, and I are non-negative integers, and. $0 \leq \sum_{i=1}^{10} k_{i} \leq 55$. Since $1451520 \leq|G|=2^{l} \cdot 243 \leq 1451520+55.272160$, then $\mathrm{I}=13$, 14 , 15 , a contradiction as I is at most 10. If $\left|P_{3}\right|=729$, then $I=11,12,13,14$, a contradiction. If $\left|P_{3}\right|=2187$, then $I=10,11$, 12. In this case we contradiction $I=10$ only. So $|G|=2^{10} \cdot 2187$. The number of Sylow 3-subgroup of G is $1,4,16$, $64,256,1024$ and so the number of order 3 is $2,32,128,512,2048$, but none of which is in $n s e(G)$, so we rule out this case.

Let $\exp \left(P_{3}\right)=243$, then by (1), $S_{243}=181440$. By Lemma 2.1, $\left|P_{3}\right| \mid 1+S_{3}+S_{9}+S_{27}+S_{81}+S_{243}$ and so $\left|P_{3}\right| \mid 3^{12}$.

Let $\exp \left(P_{3}\right)=243$, then $n_{3}=s_{243} / \phi(243)=2^{5} \cdot 5 \cdot 7$ and so 5 or 7 belongs to $\pi(G)$, a contradiction. Similarly we can rule out the order cases $\left|P_{3}\right|=3^{7}, 3^{8}, 3^{9}, 3^{10}, 3^{11}, 3^{12}$ as the methods of " $\exp \left(P_{3}\right)=81,\left|P_{3}\right|=2187$ and $l=10$ ',.

Let $\exp \left(P_{3}\right)=729$, then $\left|P_{3}\right| \mid 1+s_{3}+s_{9}+s_{27}+s_{81}+s_{243}$ and so $\left|P_{3}\right| \mid 3^{7}$.If $\left|P_{3}\right|=729$, then $n_{3}=s_{729} / \phi(729)$ $=272160 / 486=16.5 .7$, and so 5 or 7 belongs to $\pi(G)$, a contradiction. If $\left|P_{3}\right|=3^{7}$, then by Lemma 2.3, $s_{729}=729 t$ for some integer t, but the equation $s_{729}=729 t$ has no solution in \mathbb{N}.

Case B: $\pi(G)=\{2,3,5,7\}$.
We show that $2.7 \notin \omega(G)$.
If $2.7 \in \omega(G)$ set P and Q are Sylow 2-subgroups of G, then P and Q are conjugate in G and so $C_{G}(P)$ and $C_{G}(Q)$ are also conjugate in G. Therefore we have $s_{2.7}=\phi(14) \cdot n_{7} \cdot k$, where k is the number of cyclic subgroups of order 19 in $C_{G}\left(P_{7}\right)$. As $n_{7}=s_{7} / \phi(7)=207360 / 6,207360 \mid s_{14}$ and so $s_{14}=s_{7}$.

But by Lemma 2.1, $14 \mid 1+S_{2}+s_{7}+s_{14}$, a contradiction. We conclude that $2.7 \notin \omega(G)$.It follows that the group P_{2} acts fixed point freely on the set of elements of order 7 and so $\left|P_{2}\right| \mid s_{7}$. so we have $\left|P_{2}\right| \mid 2^{9}$.

Similarly we have that: $3.7 \notin \omega(G)$ and $\left|P_{3}\right| \quad\left|3^{4} ; 5.7 \notin \omega(G),\left|P_{5}\right|=5\right.$ and $| P_{7} \mid=7$.
Since $1451520 \leq|G|=2^{l} \cdot 3^{m} \cdot 5 \cdot 7$, then $\mathrm{I}=9$, $\mathrm{m}=4$ and so $|G|=\left|S_{6}(2)\right|$. By assumption, $n s e(G)=n s e\left(S_{6}(2)\right)$, and so by [7], $G \cong S_{6}(2)$.

This completes the proof.

ACKNOWLEDGMENTS

The object is supported by the Department of Education of Sichuan Province (No: 12ZB085 and 12ZB291). The author is very grateful for the helpful suggestions of the referee.

REFERENCES

[1] G. Frobenius, Verallgemeinerung des Sylowschen Satze, Berliner Sitz, (1895), 981-993.
[2] P. Hall, A note on soluble groups, Journal of the London Mathematical Society series 1, 3(1928), 98-105.
[3] M Khatami, B. Khosravi, Z. Akhlaghi, A new characterization for some linear groups, Monatsch Math, 169(2011), 39-50.
[4] G. Miller, Addition to a theorem due to Frobenius. Bull. Amer. Math. Soc, 11(1)(1904), 6-7.
[5] S. Liu, R. Zhang, A new characterization of A_{12}, Mathematical Sciences, 2012, doi: 10.1186/2251-7456-6-30.
[6] S. Liu, A characterization of $L_{3}(4)$. ScienceAsia. In press.
[7] C. Shao, and Q. Jiang, A new characterization of simple K_{4}-groups, Front. Math. China. 3(3)(2008), 355-370.
[8] C. Shao, W. Shi, and Q. Jiang, A characterization of simple K_{3}-groups, Advances in Mathematics, 38(3) (2009), 327-330 (in chinese).
[9] C. Shao, and Q. Jiang, A new charcterization of Mathieu groups, Archivum Mathematicum (BRNO), 46(2010), 13-23.
[10] R. Shen, C. Shao, Q. Jiang, W. Shi, and V. Mazurov, A new characterization of A_{5}, Monatsch Math, 160(2010), 337-341.

Source of Support: Department of Education of Sichuan Province (No: 12ZB085 and 12ZB291). China, Conflict of interest: None Declared

