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ABSTRACT 
In this paper, we extended the notion of multiplicative numbers and superperfect numbers to finite groups. We provide 
some general theorem and present examples of multiplicative groups and superperfect groups. Also, we prove some 
related results. 
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. 
1. INTRODUCTION 
 
The study of perfect numbers has been in progress for as long as many other important mathematical fields ([3, 4, 5, 6, 
7, 8]). Although it is unknown when the study of perfect numbers first began, there is clear evidence of perfect numbers 
being studied as early as Pythagoras. For any positive number n, we define 𝜎𝜎(𝑛𝑛) the sum of the divisors of n that 𝜎𝜎 is 
multiplicative and n is called perfect if σ(n) = 2n, for example 6 is perfect, since 6 = 1+2+3+6=12 ([9]). Also, n is 
called superperfect if σ�σ(n)� = 2n ([11]) and called deficient if σ�σ(n)� < 2n.  Leinster in [2] extended the notion of 
perfect numbers to finite groups. He called a finite group is perfect (FPG) if its order is equal to the sum of the orders of 
all normal subgroups of the group. In the other words, G is called perfect group if σ(G) = ∑ |N|N⊴G  =2|G|, for example 
C6. Here we go over the basic properties of multiplicatively perfect numbers. Let T(n) denote the product of all divisors 
of n. There are many numbers n with the property T(n)=n2, but none satisfying T(T(n))= n2. Let us call the number n>1 
multiplicatively perfect if T(n)= n2, and n is a deficient multiplicatively perfect if T(n) < n2. ([1, 5] for other type of 
numbres). 
 
Now, in this paper we define multiplicative and superperfect groups and we prove some related results. 
 
Theorem 1.1: (Euclid) If 2n − 1  is prime, then 2n−1 (2n − 1) is perfect. ([1]) 
 
Definition 1.2: (Mersenne Numbers) When 2p − 1 is prime, it is called a mersenne prime. 
 
Theorem 1.3:  
(i)   Even superperfect numbers are 2p − 1, where 2p − 1 is a mersenne prime. 
(ii) If any odd superperfect numbers exist, they are square numbers and either n or σ(n) is divisible by at least three 

distinct primes. ([10]) 
 
Definition 1.4: Let σm (n) = σ(σm−1(n) such that σ0(n) = n . We call n is (m, k)-perfect if σm (n) = kn.  
 
Notice: The classical perfect numbers are (1, 2)-perfect. Multiperfect numbers are (1, k)-perfect and superperfect 
numbers are (2, 2)-perfect.  
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2. MODELING OF SOME CONCEPTS FROM NUMBER THEORY TO GROUP THEORY  
 
Definition 2.1: Let G be a finite group such that σ�σ(G)� = 2|G|. Then G is said to be superperfect group. ([12]) 
 
Example 2.2: Let Q8 = < a,b : a4 = e, a2 = b2, ba = a−1b>  be a quaternion group of order eight and H = < e, a, a2, a3 > 
be a normal subgroup of Q8. Then H is a superperfect group, because σ�σ(H)� = 8 = 2|H|. 
 
Example 2.3: Let D8 be a dihedral group of order eight. And H = < e, a, a2, a3 > be a normal subgroup of D8. Then H 
is a superperfect group because σ�σ(H)� = 8 = 2|H|. 
 
Proposition 2.4: Let G be an abelian finite group of order 2 or 4. Then G is a superperfect group. 
 
Proof: First assume that |G| = 2 so G ≅ Z2 . Therefore, σ�σ(G)� = 4. Now, let |G| = 4   then G ≅ Z4 or G≅ Z2 × Z2. 
Therefore, σ�σ(G)� =8. The proof is finished. 
 
Theorem 2.5: Let G be a FPG such that |G| ≠ 1. Then G is not superperfect group. 
 
Proof: Let G be a FPG with |G| = n (n≠ 1). Therefore, we have σ(G) = 2|G| =2n. But σ�σ(G)� = σ(2n) ≠
2n. Therefore, G is not superperfect group. 
 
Question 2.6: Is it true to say that, if G be a FPG and H be a nontrivial subgroup of G then H is not FPG? 
 
Definition 2.7: Let G be a finite group, we define T(G)=∏ |N|N⊴G , the product of the orders of the normal subgroups of 
G, and say that G is multiplicatively perfect if T(G)=|G|2. 
 
Example 2.8: (Cyclic Groups) Let Cn  be the cyclic group of order n. Then Cn  has one normal subgroup of order d for 
each divisor d of n, and no others. So T(Cn)=T(n)  and Cn is multiplicatively perfect just when n is m-perfect. Thus 
multiplicatively perfect groups provide a generalization of the concept of perfect numbers and C6, C15 , C21 , C22 , 
C26 ,... are all multiplicatively perfect groups. 
 
Corollary 2.9: Let C6 be the cyclic group of order 6. This group is the only perfect group, which is also 
multiplicatively perfect. 
 
Example 2.10: (p-Groups) A finite abelian p-group is a group of order Pr , where p is prime and r ≥0. Lagrange’s 
theorem says that the order of any subgroup of a group divides the order of the group. So if G is an abelian p-group of 
order Pr , where r ≥ 0 and r≠3, then G is not multiplicatively perfect. 
 
Corollary 2.11: The only abelian p-group of order P3 is a multiplicatively perfect group. 
 
Example 2.12: (Symmetric and Alternating Groups) For n ≤ 4, we have 
T(A1) = 1; T(S1) = 1 
T(A2) = 1; T(S2) = 2 
T(A3) = 1 × 3 = 3; T(S3) = 1 × 3 × 6 = 18 
T(A4) = 1 × 4 × 12 = 48; T(S4) = 1 × 4 × 12 × 24 = 1152. 
 
So if n ≤ 4, then A1 and S1 are the only groups that are multiplicatively perfect. 
 
Example 2.13: (Dihedral Groups) let E2n  be the dihedral group of order 2n. That is, the group of all isometries of a 
regular n-sided polygon. Of the 2n isometries, n are rotations (forming a cyclic subgroup of order n) and n are 
reflections. We examine the cases of n odd and n even separately. If n odd: All reflections are in an axis passing 
through a vertex and the midpoint of the opposite side, and any reflection is conjugate to any other by a suitable 
rotation. Thus if N ⊴ E2n  and N contains a reflection, that N contains all reflections; but 1 into N too so |N|≠n+1, so N 
=E2n . So any proper normal subgroup is inside the rotation group Cn . Conversely, any (normal) subgruop of Cn  is 
normal in E2n . Thus T(E2n) = T(Cn)×2n, and E2n  is not multiplicatively perfect group. If n even: The reflections split in 
to two conjugacy classes, R1 and R2 which each of size 𝑛𝑛

2
. Write Cn

2�
 for the group of rotations by 2 or 4 or ... or n 

vertices. A subgroup of E2n  which is cyclic of order of  𝑛𝑛
2
. Then we can show that smallest subgroup of E2n  contaning 

Ri is Ri+Cn
2�
 , for i=1 and 2. Moreover, Ri+Cn

2�
 is of order n, i.e. index 2. Therefore, Ri+Cn

2�
 is  normal in E2n . So we  

 
have two different normal subgroups, R1+Cn

2�
 and R2+Cn

2�
, of order n. We also have the normal subgroups 1 and E2n . 

Hence T(E2n)≠1×n×n×2n, and E2n  is multiplicatively perfect if and only if n = 2. 
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Theorem 2.14: Let G1 and G2 be two finite groups of order P1 and P2 respectively, where P1 and P2 are distinct prime 
numbers. Then T(G1×G2) = T(G1)φ(|G2|)−1T(G2)φ(|G1|)−1, such that φ(n) is the number of the divisors of n. 
 
Proof: The result follows by definition. 
 
Definition 2.15: Let G be a finite group. Then Δ(G)=T(G)

|G|
 . 

 
Observation 2.16: For any normal subgroup N of any finite group we have 
(i)  If G ≠ 1, then Δ(G/N ) ≤ Δ(G). 
(ii) G is simple group if and only if Δ(G) = 1. 
 
Theorem 2.17: If G is finite nilpotent group with T(G) ≤ |G|2, then G is cyclic and |G| is a multiplicatively perfect or 
multiplicatively deficient number. 
 
Proof: Let G be a finite nilpotent group with T(G) ≤ |G|2 and let H be an arbitrary Sylow p-subgroup of G for some 
prime divisor p of |G|. In particular, H is a direct factor of G. By observation 2.16 (i), it followes that T(H) ≤ |H|2. Now, 
let F denote the Frattini subgroup of H, then H

F
 is an elementary abelian p-group whose rank, say r, is the minimal 

number 3 of generators of H. By observation 2.16 (i), we have T(H
F
) ≤ | H

F
|2. On the other hand, if r > 1, then p ≤ T(H

F
) 

since H
F
 contains at least p+1 subgroups of order Pr−1. This forces r = 1. Hence H is cyclic. Then every Sylow subgroup 

of G is cyclic. Since G is nilpotent, this implies that G itself must be cyclic. Therefore, T(G) = T(|G|), and we conclude 
that |G| must be a multiplicatively perfect or a multiplicatively deficient number. 
 
Corollary 2.18: Every nilpotent quotient of a multiplicatively perfect group is cyclic. 
 
Lemma 2.19: Let G be a finite group and p be a prime, then the number of normal subgroups of G with index p is 
 Pr  – 1

p − 1
 = 1 + p + … + Pr−1; for some r ≥ 0. 

 
Proof: See the Lemma 5.1 of [2]. 
 
Definition 2.20: Let G be a finite group. Then G is called a tight if for each prime p, G has at most one normal 
subgroup of index p. 
 
Proposition 2.21: 
(i)   A group G with T(G) ≤ |G|2 is tight. 
(ii)  A quotient of a tight group is tight. 
(iii) A tight abelian group is cyclic. 
 
Proof: 
(1) (i) For each prime p, we have |G|2 ≥ T(G) ≥ |G|P

r  – 1
p − 1

.|G|
𝑝𝑝

 , where r is as in Lemma 2.19.  

      If r ≥ 2 then P
r  – 1

p − 1
.|G|
𝑝𝑝

 ≥ (p+ 1) |G|
𝑝𝑝

 > |G| is a contradiction. Thus r is 0 or 1, and so P
r  – 1

p − 1
 is 0 or 1. 

 
(2) (ii) Let 𝜋𝜋 : G1 → G2 be a surjective homomorphism. If N and N′  are distinct normal subgroups of G2 with index p, 

then 𝜋𝜋−1𝑁𝑁and 𝜋𝜋−1N′  are distinct normal subgroups of G1 with index p. 
 
(3) (iii) For this we invoke the classification theorem for finite abelian groups, which tells us that for any abelian group 

A there exist primes P1,…, Pn  and numbers t1,…, tn ≥ 1 such that A≅ ZP1
t1  × ZP2

t2  ×…× ZPn
tn  . Suppose that Pi = 

Pj  (= p, say) for some i≠j. Then, since ti  ≥ 1, ZPti   has a (normal) subgroup Ni of index p and similarly ZPtj  . Hence 
Ni × ZPtj  and ZPti × Nj are distinct index-p subgroups of ZPti × ZPtj  and ZPti × ZPtj  is not tight. Since ZPti × ZPtj  is 
a quotient of A, part (ii) implies that A is not tight either. Thus if A is tight then all the Pk  are distinct, so that 
A≅ ZP1

t1 P2
t2 …Pn

tn  . 
 
Definition 2.22: An abelian quotient of a group G is just a quotient of G which is abelian. That is, it’s an abelian group 
A for which there exists a surjective homomorphism G → A, alternatively, it’s an abelian group isomorphic to G/K for 
some normal subgroup K of G. 
 
 
Theorem 2.23: (Abelian Quotient Theorem) If G be a finite group with T(G) ≤ |G|2 then any abelian quotient of G is 
cyclic. 
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Proof: Putting together the three parts of the last proposition gives us the proof of the abelian quotient theorem. 
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