International Research Journal of Pure Algebra -3(8), 2013, 286-289

BALANCED GROUPS AND RINGS

Adel A. Abdelkarim*
Mathematics Department, Faculty of Science, Jerash University, Jerash, Jordan

(Received on: 27-04-13; Revised \& Accepted on: 31-08-13)

Abstract

A finite group G is balanced if the product of its elements, in some order, or its square is the identity element. We give examples of some balanced groups. Let R be a ring (not necessarily commutative) with a finite cyclic group U of units of order n. It is shown that the product of units is -1 if n is even and it is 1 if n is odd. Let D be an integral domain with a finite number n of units and with ch((D) different from 2. It is shown that the product of units is -1 . Let R be a commutative ring with 1 whose characteristic is not 2 and that has a finite group of units U and let the order of U be n. It is shown that n is even. Let R be a commutative ring with 1 which has a finite number of units and let A be the nil radical of R. Then R / A has a finite number of units whose product is 1 or $-1 \bmod A$.

Subject class number: 16U60.
Keywords: n-balanced groups and rings, units, nil radical.

INTRODUCTION

A finite group is called n-balanced (NB) if we can arrange the elements in some order such that when we multiply out these elements in this order and raise the result to the n-the power we get the identity. The group is freely n-balanced (FNB) if the product of its elements, in any order, when raised to the n-the power gives the identity. A ring with unity is called NB or FNB if it has NB or FNB finite group of units. Let us call a group or a ring to be balanced if it is 1 or 2balanced, free or not. Let G be a multiplicative group of odd order $2 n+1$. Then G is $1 B$: For there is no elements which coincides with its own inverse except the identity and so we get $e\left(b_{1} b_{1}^{-1}\right) \ldots\left(b_{n} b_{n}{ }^{-1}\right)=e$. Thus in any finite field F of characteristic 2 the non zero elements form a 1B multiplicative group. Let G be a multiplicative cyclic group of even order 2 m then it is F2B. For, the product of its elements is the unique element of order 2 . It follows that if p is an odd prime and if F is a finite field of characteristic p then the group of units is F2B. By the fundamental theorem of finite Abelian groups every finite Abelian group is F1B or F2B.

Proposition 1: Any finite product of balanced groups (or rings) is a balanced (group) or ring.
The proof is trivial.

Example 1:

(a) The symmetric group S_{3} is 2-balanced. For $(123)(12)(13)(23)(132)=(123)(13)(132)=(12)$ and (12) has order 2 . We notice that the equilateral triangle is balanced.
(b) Similarly the dihedral group $D_{4}=\{e,(1234),(13)(24),(1432),(12)(34),(14)(23),(13),(24)\}$ is 2-balanced: for the product of the first four elements is (13)(24), the product of the last four elements is e and the square of $(13)(24)$ is e. Again the square is balanced. It looks like that the general dihedral group D_{n} is balanced although I have no proof for this.
(c) It can be shown that S_{4}, A_{4}, V_{4} are balanced.

Question 1: For every n is it true that S_{n}, A_{n} are balanced?
Question 2: Is every finite non Abelian group is balanced?

* Corresponding author: Adel A. Abdelkarim*

Mathematics Department, Faculty of Science, Jerash University, Jerash, Jordan
E-mail: adelafifo_afifo@yahoo.com

We restrict our attention in the rest of this paper to a special class of groups, namely the group of units of a ring and especially commutative rings.

Remark 1: (1) Let U be the group of units of the ring $Z_{p^{n}}$, where p is an odd prime and $n \geq 1$. Then U is F2B.
(2) Let U be the group of units of $Z_{2^{n}}, n>1$. Then U is F2B.
(3) Let U be the group of units of $Z_{2 p^{n}}$, where p is an odd prime and $n \geq 1$. Then U is F2.

Proof:

(1) Assume p is odd. Then the group of units is of even order $p^{n}-p^{n-1}$ and it is cyclic because the number p^{n} has a primitive root. Then from proposition 1 the product is -1 .
(2) If $n=1$ then the product of units is 1 . If $n=2$ then the product of units is -1 . Let $n \geq 3$ then the multiplicative group of units is isomorphic with the additive group $G=Z_{2} \oplus Z_{2^{n-2}}$ and so the product of units corresponds to the sum of elements in G which is 0 and so the product of units in R is 1 .
(3) Let U be the multiplicative group of units of R. Then U is isomorphic to the additive cyclic group $Z_{p^{n}-p^{n-1}}=S=Z_{2 m}$. Now the product b of elements of U corresponds to the sum a of elements of group S and $a=m$ of order 2 and it is the only such element. Since -1 is in U and it is of order 2 it follows that the product of units is- 1 .

Proposition 2: Let D be an integral domain with a finite group U of units of order n. Then D is balanced.
Proof: If the characteristic of D is 0 then D contains a copy of Z and the units of D form a non trivial subgroup of the cyclic group of some n-th roots of unity. By proposition 1 the product of units is 1 or -1 . If the characteristic is p then the group of units $U(D)$ is a subgroup of the cyclic group of non zero elements of a finite field F of characteristic p. Then by proposition 1 the product of units is 1 or -1 .

Remark 2:

(1) Let p be a prime integer and let $R=Z_{p^{n}}$. Let U be the group of units of R. Let b be the product of elements of U . Then $b=-1$. We have two cases to consider: $\mathrm{p}=2$ and $\mathrm{p} \neq 2$.

Let $p=2$. If $n=1$ then $b=1=-1$. If $n=2$ then the $b=3=-1$. If $n>2$ then multiplicative group U is isomorphic with the additive group $G=Z_{2} \oplus Z_{2^{n-2}}$. Then the product b of elements of U corresponds to the sum of elements of G which is $(0,0)$ and so $b=1=-1$.

Now we consider the case p is an odd prime. Then p^{n} has a primitive root. Thus U is cyclic of even order $p^{n}-p^{n-1}$ and so $\mathrm{b}=-1$ by corollary 1 .
(2) Let $R=Z_{2 p^{n}}$, p is an odd prime. Then $2 p^{n}$ has a primitive root and so U is cyclic of even order and so the product, by corollary 1 is $b=-1$. The last assertion is clear since the radical is isomorphic with Z_{2}.

Proposition 3: Let R be the ring $Z_{m}, m=p_{1}{ }^{e_{1}} \ldots p_{n}{ }^{e_{n}}, \mathrm{n}>1, e_{i}>1, \mathrm{i}=1, \ldots, \mathrm{n}$, where the p_{i} are distinct primes. Let U be the multiplicative group of units in R and let b be the product of elements of U.
Then $\mathrm{b}=1$ in R .
Proof: The ring R is isomorphic with the ring $T=R_{1} \oplus \ldots \oplus R_{n}$, where $R_{i}=Z_{p^{e_{i}}}$. Let $\mathrm{U}_{\mathrm{i}}=\mathrm{U}\left(\mathrm{R}_{\mathrm{i}}\right)$, k_{i} the order of U_{i} and let b_{i} be the product of elements of U_{i}. Let l_{i} be the sum of all k_{j} except k_{i}. Then $U(R)$ is isomorphic with the direct sum of U_{i}. If p_{1} is not 2 then all l_{i} are even and b is the product of all $b_{i}^{k}{ }_{i}$ which is equal to $(1, \ldots, 1)=1_{R}$. If $p_{1}=2 e_{1}=e>1$. Then $R=Z \oplus S$, S is nontrivial. Then b is the product of even number of the element $b^{\prime}=(\pm 1,1)$ and this is 1_{R}.

Proposition 4: Let R be a commutative ring with 1 whose characteristic is not 2 and which has a finite group U of units of n elements. Then n is even.

Proof: Assume that U has odd number of elements. Then U is isomorphic to a finite direct product of n primary multiplicative cyclic groups $\mathrm{C}_{\mathrm{i}}=<\mathrm{a}_{\mathrm{i}}>, \mathrm{i}=1, \ldots \mathrm{n}$ each of order some prime power. Let us first assume $\mathrm{n}=1$ and so $\mathrm{U}=<\mathrm{a}>$

Adel A. Abdelkarim*/ Balanced Groups and Rings/IRJPA- 3(8), August-2013.

and let the order of a be m . Now -1 is a unit different from 1 and so $-1=a^{k}$. But then $a^{2 k}=1$. Using division algorithm we have $2 k=l m+r, 0 \leq r<n$. It follows that $a^{r}=1$ and this is a contradiction since $0 \leq r<n$.In case $n=2$ then U is the direct sum of two cyclic groups $<a_{1}>,<a_{2}>$ of order k, 1 respectively. Then -1 can be represented as a pair $\left(a_{1}{ }^{k^{\prime}}, a_{2}{ }^{{ }^{\prime}}\right)$. Thus 1 corresponds to $\left(\mathrm{a}_{1}{ }^{2 \mathrm{k}^{\prime}}, \mathrm{a}_{2}{ }^{2 \prime}\right)=(1,1)$. Using division algorithm we get a similar contradiction. The general case follows from this.

Example 2: The ring Z_{8} has a group of units of 4 elements and their product is 1 . Let $\mathrm{G}=<\mathrm{a}>$, a^{3}. Let $\mathrm{R}=\mathrm{b} \mathrm{Z}_{2}[\mathrm{G}]$ be group ring of Z_{2} over G. Then R is a commutative ring with 8 elements. Its characteristic is 2 and the group G of units has 3 elements with a product 1 . In most cases the product of units was always 1 or -1 . This is not always true in commutative rings with a finite group of units.

Example 3: Let $\mathrm{G}=<\mathrm{x}$: $\mathrm{x}^{4}=1>$ be a multiplicative cyclic group of order 4.
Let $R=Z_{2}[G]$ be the group ring of G over Z_{2}. Then R has 16 elements of the form $a+b x+c x^{2}+d x^{3}, a, b, c, d$ are in Z_{2}. Let V be the multiplicative group of units of R. Then V is contained in the set $W=\left\{1+a x+b x^{2}+c x^{3}, a, b, c\right.$ are in $\left.Z_{2}\right\}$. Now W has 8 elements: $A=1, B=1+x, C=1+x^{2}, D=1+x^{3}, E=1+x+x^{2}, F=1+x+x^{3}, G=1+x^{2}+x^{3}, H=1+x+x^{2}+x^{3}$. Since $C^{2}=0$ and $H^{2}=0$, the possible units are A, B, D, E, F, G. Since $A=1$ we have to check only the elements B, D, E, F, G. Here is the multiplication table for these elements:

.	B	D	E	F	G
B	C	xC	D	xC	xB
D	xC	C	$x^{2} B$	xB	B
E	D	$x^{2} B$	x^{3}	x	0
F	xC	xB	x	1	x^{3}
G	xB	B	0	x^{3}	x^{2}

We see that the only units in R are 1 and F and so the number of units is 2 . The product of units is F which is neither 1 nor -1 .

Let R be a ring. We denote by \sqrt{R} the nil radical of the ring R generated by the set of nilpotent elements in R .
Remark 3: Let A be the nil radical of the ring R in the example above. Then we notice that the product of units is $\mathrm{F}=1+\left(\mathrm{x}+\mathrm{x}^{3}\right)$ and $\left(\mathrm{x}+\mathrm{x}^{3}\right)^{2}=\mathrm{x}^{2}+\mathrm{x}^{6}=\mathrm{x}^{2}+\mathrm{x}^{2}=0$. Thus the product of units is $1 \bmod \mathrm{~A}$.

The following is, in a way, a generalization of the remark above.
Proposition 5: Let R be a commutative ring with 1 which has a finite number of units and let A be the radical of R. Then R/A has a finite number of units whose product $\mathrm{b}=1$ or $-1 \bmod \mathrm{~A}$.

Proof: R/A is a commutative ring which has no nilpotent elements and let $U=\left\{u_{1}, \ldots, u_{n}\right\}$ be the group of units. Then from the fundamental theorem of Abelian groups $U=\oplus_{i=1}{ }^{k} U_{n_{i}}, \mathrm{n}_{\mathrm{i}}$ divides $\mathrm{n}_{\mathrm{i}+1}, \mathrm{i}=1, \ldots, \mathrm{k}-1$ and U_{ni} is cyclic of order n_{i}. In our case each n_{i} is even. In case $k=1$ then $U=<a>$ is cyclic of order $2 n$ and the product of its elements is the element $b=a . a^{2} \ldots a^{2 n-1}$. The sum of the exponents in the left hand side b is $((1+2 n-1) / 2 \quad) .(2 n-1)=2 n^{2}-n=n$ mod $2 n$. Thus b has order 2 . Since U is cyclic there is only one such element. Since -1 is a unit and has order 2 then $a^{n}=-1$. If $k>1$ then the product of units is the same as the product of units of order 2 . Each such element is of the form $\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{k}}\right)$ where each x_{i} is either the identity element of $U_{n i}$ or the unique element a_{i} in $U_{n i}$ of order 2. Since $k>1$, when we multiply out the units each a_{i} is repeated even number of times. Thus the product is 1 .Therefore the product of units in R/A is 1 or -1 $\bmod A$.

In the following we compute the product of units of other two examples of a commutative rings with a finite group of units

Example 4:

(1) Let m be a positive integer and let ω be a primitive m-th root of unity in the complex plane. Let $\mathrm{R}=\mathrm{Z}[\omega$].If m is odd the group of units constitutes of the m-roots of 1 together with their negatives and so it is the group of the 2 m th roots of 1 and it is a cyclic group of order 2 m . If m is even then -1 is an m -th root of 1 and we see that the set of m -th roots of 1 coincides with the group of units of R which is then cyclic and the product of units is -1 .
(2) Let m be a positive integer and let R be be the ring Z equipped with all m -th roots of -1 in the complex plane. Then the group of units of R is the group of 2 m -th roots of unity. We see that the product of units is -1 .

So far, we have seen that the number of units in a commutative ring is an even integer. There is an open question:
Question 3: Given a finite Abelian group G of even order $2 n$ is there a commutative ring R with 1 such that the group of units is isomorphic with U ?.

We give an example of a finite non commutative ring with 1 whose group of units U is finite and isomorphic with S_{3}.
Example 5: Let R be the matrix ring of all 2 by 2 matrices over Z_{2}. There are 16 matrices in R and U is non Abelian that has 6 elements each of which has determinant 1. They are
$\mathrm{e}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right], \mathrm{b}=\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right], \mathrm{c}=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right], \mathrm{d}=\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right], \mathrm{h}=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right], \mathrm{f}=\left[\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right]$.
U is isomorphic with S_{3}.
Proposition 6: Let U be a given finite Abelian group. There is a commutative ring R with 0 -nilradical and with group of units containing U.

Proof: By the fundamental theorem of Abelian groups U is a direct sum of primary cyclic groups. Assume that the corresponding orders are n_{1}, \ldots, n_{k}, respectively. For every n_{i} we take the ring R_{i} to be the ring Z equipped with the set of all n_{i}-th roots of 1 and we take R to be the direct sum of the rings R_{i}. Clearly the group of units of R contains the group U.

We finish with
Question 4: Is any finite group balanced?

BIBLIOGRAPHY

[1] Burton, David M., Elementary Number Theory, Allen and Bacon, 1976
[2] Gallian, Joseph A., Contemporary Abstract Algebra, Fourth Edition, Narosa Publishing House,1999
[3] B.L van der Waerden, Algebra, Volume I, Frederick Unger Publishing Co., New York
[4] Zariski, O. and P. Samuel, Commutative Algebra, Volume I, Springer-Verlag, 1979.

Source of Support: Jerash University (Jordan), Conflict of interest: None Declared

