International Research Journal of Pure Algebra -3(8), 2013, 286-289 Available online through www.rjpa.info

BALANCED GROUPS AND RINGS

Adel A. Abdelkarim*

Mathematics Department, Faculty of Science, Jerash University, Jerash, Jordan

(Received on: 27-04-13; Revised & Accepted on: 31-08-13)

ABSTRACT

A finite group *G* is balanced if the product of its elements, in some order, or its square is the identity element. We give examples of some balanced groups. Let *R* be a ring (not necessarily commutative) with a finite cyclic group *U* of units of order *n*. It is shown that the product of units is -1 if *n* is even and it is 1 if *n* is odd. Let *D* be an integral domain with a finite number *n* of units and with ch(D) different from 2. It is shown that the product of units is -1. Let *R* be a commutative ring with 1 whose characteristic is not 2 and that has a finite group of units *U* and let the order of *U* be *n*. It is shown that *n* is even. Let *R* be a commutative ring with 1 which has a finite number of units and let A be the nil radical of *R*. Then *R*/A has a finite number of units whose product is 1 or -1 mod A.

Subject class number: 16U60.

Keywords: n-balanced groups and rings, units, nil radical.

INTRODUCTION

A finite group is called *n*-balanced (NB) if we can arrange the elements in some order such that when we multiply out these elements in this order and raise the result to the n-the power we get the identity. The group is *freely n*-balanced (FNB) if the product of its elements, in any order, when raised to the n-the power gives the identity. A ring with unity is called NB or FNB if it has NB or FNB finite group of units. Let us call a group or a ring to be *balanced* if it is 1 or 2-balanced, free or not. Let G be a multiplicative group of odd order 2n+1. Then G is 1B: For there is no elements which coincides with its own inverse except the identity and so we get $e(b_1 \ b_1^{-1})...(b_n \ b_n^{-1}) = e$. Thus in any finite field F of characteristic 2 the non zero elements form a 1B multiplicative group. Let G be a multiplicative cyclic group of even order 2m then it is F2B. For, the product of its elements is the unique element of order 2. It follows that if p is an odd prime and if F is a finite field of characteristic p then the group of units is F2B. By the fundamental theorem of finite Abelian group is F1B or F2B.

Proposition 1: Any finite product of balanced groups (or rings) is a balanced (group) or ring.

The proof is trivial.

Example 1:

- (a) The symmetric group S_3 is 2-balanced. For (123)(12)(13)(23)(132)=(123)(13)(132)=(12) and (12) has order 2. We notice that the equilateral triangle is balanced.
- (b) Similarly the dihedral group $D_4 = \{e, (1234), (13)(24), (1432), (12)(34), (14)(23), (13), (24)\}$ is 2-balanced: for the product of the first four elements is (13)(24), the product of the last four elements is e and the square of (13)(24) is e. Again the square is balanced. It looks like that the general dihedral group D_n is balanced although I have no proof for this.
- (c) It can be shown that S_4 , A_4 , V_4 are balanced.

Question 1: For every n is it true that S_n , A_n are balanced?

Question 2: Is every finite non Abelian group is balanced?

Corresponding author: Adel A. Abdelkarim Mathematics Department, Faculty of Science, Jerash University, Jerash, Jordan E-mail: adelafifo_afifo@yahoo.com

Adel A. Abdelkarim*/ Balanced Groups and Rings/IRJPA- 3(8), August-2013.

We restrict our attention in the rest of this paper to a special class of groups, namely the group of units of a ring and especially commutative rings.

Remark 1: (1) Let U be the group of units of the ring Z_{n^n} , where p is an odd prime and $n \ge 1$. Then U is F2B.

- (2) Let U be the group of units of Z_{2^n} , n>1. Then U is F2B.
- (3) Let U be the group of units of Z_{2p^n} , where p is an odd prime and $n \ge 1$. Then U is F2.

Proof:

- (1) Assume p is odd. Then the group of units is of even order $p^n p^{n-1}$ and it is cyclic because the number p^n has a primitive root. Then from proposition 1 the product is -1.
- (2) If n=1 then the product of units is 1. If n=2 then the product of units is -1. Let $n \ge 3$ then the multiplicative group of units is isomorphic with the additive group $G = Z_2 \oplus Z_{2^{n-2}}$ and so the product of units corresponds to the sum of elements in G which is 0 and so the product of units in R is 1.
- (3) Let U be the multiplicative group of units of R. Then U is isomorphic to the additive cyclic group $Z_{p^n-p^{n-1}} = S = Z_{2m}$. Now the product b of elements of U corresponds to the sum a of elements of group S and a=m of order 2 and it is the only such element. Since -1 is in U and it is of order 2 it follows that the product of units is-1.

Proposition 2: Let D be an integral domain with a finite group U of units of order n. Then D is balanced.

Proof: If the characteristic of D is 0 then D contains a copy of Z and the units of D form a non trivial subgroup of the cyclic group of some n-th roots of unity. By proposition 1 the product of units is 1 or -1. If the characteristic is p then the group of units U(D) a subgroup of the cyclic group of non zero elements of a finite field F of characteristic p. Then by proposition 1 the product of units is 1 or -1.

Remark 2:

(1) Let p be a prime integer and let $R = Z_{n^n}$. Let U be the group of units of R. Let b be the product of elements of U.

Then b = -1. We have two cases to consider: p=2 and $p \neq 2$.

Let p=2. If n=1 then b=1=-1. If n=2 then the b=3=-1. If n>2 then multiplicative group U is isomorphic with the additive group $G = Z_2 \oplus Z_{2^{n-2}}$. Then the product b of elements of U corresponds to the sum of elements of G which is (0,0) and so b=1=-1.

Now we consider the case p is an odd prime. Then p^n has a primitive root. Thus U is cyclic of even order $p^n - p^{n-1}$ and so b=-1 by corollary 1.

(2) Let $R = Z_{2n^n}$, p is an odd prime. Then $2p^n$ has a primitive root and so U is cyclic of even order and so the

product, by corollary 1 is b=-1. The last assertion is clear since the radical is isomorphic with Z_2 .

Proposition 3: Let R be the ring Z_m , $m = p_1^{e_1} \dots p_n^{e_n}$, n > 1, $e_i > 1$, $i = 1, \dots, n$, where the p_i are distinct primes. Let U be the multiplicative group of units in R and let b be the product of elements of U. Then b=1 in R.

Proof: The ring R is isomorphic with the ring $T = R_1 \oplus ... \oplus R_n$, where $R_i = Z_{p^{e_i}}$. Let $U_i = U(R_i)$, k_i the order of U_i and let b_i be the product of elements of U_i . Let l_i be the sum of all k_j except k_i . Then U(R) is isomorphic with the direct sum of U_i . If p_1 is not 2 then all l_i are even and b is the product of all b_i^{k} which is equal to $(1,...,1) = l_R$. If $p_1 = 2 e_1 = e > 1$. Then $R = Z \oplus S$, S is nontrivial. Then b is the product of even number of the element $b' = (\pm 1, 1)$ and this is l_R .

Proposition 4: Let R be a commutative ring with 1 whose characteristic is not 2 and which has a finite group U of units of n elements. Then n is even.

Proof: Assume that U has odd number of elements. Then U is isomorphic to a finite direct product of n primary multiplicative cyclic groups $C_i = \langle a_i \rangle$, i=1,...n each of order some prime power. Let us first assume n=1 and so U= $\langle a \rangle$ © 2013, RJPA. All Rights Reserved 287 and let the order of a be m. Now -1 is a unit different from 1 and so $-1=a^k$. But then $a^{2k}=1$. Using division algorithm we have 2k=lm+r, $0 \le r < n$. It follows that $a^r=1$ and this is a contradiction since $0 \le r < n$. In case n=2 then U is the direct sum of two cyclic groups $<a_1 >, <a_2>$ of order k, l respectively. Then -1 can be represented as a pair $(a_1^{k'}, a_2^{l'})$. Thus 1 corresponds to $(a_1^{2k'}, a_2^{2l'}) = (1,1)$. Using division algorithm we get a similar contradiction. The general case follows from this.

Example 2: The ring Z_8 has a group of units of 4 elements and their product is 1. Let $G=\langle a \rangle$, a^3 . Let R=b $Z_2[G]$ be group ring of Z_2 over G. Then R is a commutative ring with 8 elements. Its characteristic is 2 and the group G of units has 3 elements with a product 1. In most cases the product of units was always 1 or -1. This is not always true in commutative rings with a finite group of units.

Example 3: Let $G = \langle x: x^4 = 1 \rangle$ be a multiplicative cyclic group of order 4.

Let $R=Z_2[G]$ be the group ring of G over Z_2 . Then R has 16 elements of the form $a+bx+cx^2+dx^3$, a,b,c,d are in Z_2 . Let V be the multiplicative group of units of R. Then V is contained in the set $W=\{1+ax+bx^2+cx^3,a,b,c$ are in $Z_2\}$. Now W has 8 elements: $A=1,B=1+x,C=1+x^2,D=1+x^3,E=1+x+x^2, F=1+x+x^3,G=1+x^2+x^3, H=1+x+x^2+x^3$. Since $C^2=0$ and $H^2=0$, the possible units are A,B,D,E,F,G. Since A=1 we have to check only the elements B, D, E, F, G. Here is the multiplication table for these elements:

	В	D	Е	F	G
В	С	xC	D	xC	xВ
D	xC	С	$x^2 B$	xВ	В
Е	D	x^2B	x^{3}	х	0
F	xC	xB	х	1	x ³
G	xВ	В	0	x ³	\mathbf{x}^2

We see that the only units in R are 1 and F and so the number of units is 2. The product of units is F which is neither 1 nor -1.

Let R be a ring. We denote by \sqrt{R} the nil radical of the ring R generated by the set of nilpotent elements in R.

Remark 3: Let A be the nil radical of the ring R in the example above. Then we notice that the product of units is $F=1+(x+x^3)$ and $(x+x^3)^2=x^2+x^6=x^2+x^2=0$. Thus the product of units is 1 mod A.

The following is, in a way, a generalization of the remark above.

Proposition 5: Let R be a commutative ring with 1 which has a finite number of units and let A be the radical of R. Then R/A has a finite number of units whose product b = 1 or $-1 \mod A$.

Proof: R/A is a commutative ring which has no nilpotent elements and let $U = \{u_1, ..., u_n\}$ be the group of units. Then from the fundamental theorem of Abelian groups $U = \bigoplus_{i=1}^{k} U_{n_i}$, n_i divides n_{i+1} , i=1,...,k-1 and U_{ni} is cyclic of order n_i . In our case each n_i is even. In case k=1 then $U=\langle a \rangle$ is cyclic of order 2n and the product of its elements is the element $b=a.a^2...a^{2n-1}$. The sum of the exponents in the left hand side b is ((1+2n-1)/2). $(2n-1)=2n^2-n=n \mod 2n$. Thus b has order 2. Since U is cyclic there is only one such element. Since -1 is a unit and has order 2 then $a^n = -1$. If k>1 then the product of units is the same as the product of units of order 2. Each such element is of the form $(x_1,...,x_k)$ where each x_i is either the identity element of U_{ni} or the unique element a_i in U_{ni} of order 2. Since k>1, when we multiply out the units each a_i is repeated even number of times. Thus the product is 1. Therefore the product of units in R/A is 1 or $-1 \mod A$.

In the following we compute the product of units of other two examples of a commutative rings with a finite group of units

Example 4:

- (1) Let m be a positive integer and let ω be a primitive m-th root of unity in the complex plane. Let R=Z[ω]. If m is odd the group of units constitutes of the m-roots of 1 together with their negatives and so it is the group of the 2m-th roots of 1 and it is a cyclic group of order 2m. If m is even then -1 is an m-th root of 1 and we see that the set of m-th roots of 1 coincides with the group of units of R which is then cyclic and the product of units is -1.
- (2) Let m be a positive integer and let R be be the ring Z equipped with all m-th roots of -1 in the complex plane. Then the group of units of R is the group of 2m-th roots of unity. We see that the product of units is -1.

Adel A. Abdelkarim*/ Balanced Groups and Rings/IRJPA- 3(8), August-2013.

So far, we have seen that the number of units in a commutative ring is an even integer. There is an open question:

Question 3: Given a finite Abelian group G of even order 2n is there a commutative ring R with 1 such that the group of units is isomorphic with U?.

We give an example of a finite non commutative ring with 1 whose group of units U is finite and isomorphic with S₃.

Example 5: Let R be the matrix ring of all 2 by 2 matrices over Z_2 . There are 16 matrices in R and U is non Abelian that has 6 elements each of which has determinant 1. They are

$$\mathbf{e} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}, \mathbf{c} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}, \mathbf{d} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}, \mathbf{h} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \mathbf{f} = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}.$$

U is isomorphic with S₃.

Proposition 6: Let U be a given finite Abelian group. There is a commutative ring R with 0-nilradical and with group of units containing U.

Proof: By the fundamental theorem of Abelian groups U is a direct sum of primary cyclic groups. Assume that the corresponding orders are $n_1, ..., n_k$, respectively. For every n_i we take the ring R_i to be the ring Z equipped with the set of all n_i -th roots of 1 and we take R to be the direct sum of the rings R_i . Clearly the group of units of R contains the group U.

We finish with

Question 4: Is any finite group balanced?

BIBLIOGRAPHY

- [1] Burton, David M., Elementary Number Theory, Allen and Bacon, 1976
- [2] Gallian, Joseph A., Contemporary Abstract Algebra, Fourth Edition, Narosa Publishing House, 1999
- [3] B.L van der Waerden, Algebra, Volume I, Frederick Unger Publishing Co., New York
- [4] Zariski, O. and P. Samuel, Commutative Algebra, Volume I, Springer-Verlag, 1979.

Source of Support: Jerash University (Jordan), Conflict of interest: None Declared