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ABSTRACT 

In this paper we prove a fixed point theorem in a metric space, without using continuity. Incidentally we observe that 
the result of K. Prudhvi [14] is not valid for Cone Metric Spaces. We also observe that it is valid for metric spaces and  
follows from our result. 
 
Keywords:  Metric Space, Fixed Point, Asymptotically Regular, φ- Contraction. 
 
Mathematics Subject Classification: 46L06; 39B82; 39B52. 
 
 
1 INTRODUCTION 
 
In 2006, P.D. Proinov [13] obtained two types of generalizations of Banach fixed point theorem. The first type involves 
Meir-Keeler [9] type conditions (see, for instance, Cho et al., [3], Lim [8], Park and Rhoades [11]) and the second type 
involves contractive guage functions (see, for instance, Boyd and Wong [1] and Kim et al., [7]). Proinov [12] obtained 
equivalence between these two types of contractive conditions and also obtained a new fixed point theorem 
generalizing some fixed point theorems of Jachymski [6] (see Proinov [12] Theorem 4.1) into multi valued maps. 
K.Prudhvi [15] proved a Common Fixed Point Theorem for Asymtotically Regular Multivalued Three Maps. Their 
result generalizes and extends some recent results of S.L. Singh et al. [17] for three maps. Also K. Prudhvi [14] proved 
a fixed point theorm for a continuous self map on a Cone Metric Space. His result generalizes and extends the results  
Proinov [13]. We observe that the result of Prudhvi [14] is not really a result in Cone Metric Spaces. In this paper 
however, we prove a metri space version of the result of Prudhvi [14] without using continuity of the self map. 
 
WE BEGIN WITH TWO DEFINITIONS  
 
1.1 Definition ([13], Definition 2.1(i)): Let Ф denote the class of all functions φ: R+→ R+ such that φ is increasing and 
for any ℇ > 0,  ∃ δ > ℇ ∋ ℇ ≤ t < δ⟹ φ(t) < Ԑ. 
 
Asymptotic regularity for single- valued maps is due to Brower and Petryshyn [4]. 
 
1.2 Definition [4]: A self-map T on a metric space (X, d) is asymptotic regular 
 
 if  ∃  x 0 ∈ X ∋ d(Tn x0, Tn+1 x0) → 0 as n → ∞. 
 
K. Prudhvi [14] proved the following fixed point theorem for a continuous self map on a Cone Metric Space. His result 
generalizes and extends the results of Proinov [13]. For relevant definitions we may refer to [14]. Mappings considered  
in [14] are called φ – contractions. 
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1.3 Theorem ([14] K. Prudhvi, Theorem 2.2) 
                 
Let T be a continuous and asymptotically regular self-mapping on a complete cone metric space (X, d) and P be an 
order cone satisfying the following conditions: 
 
d(Tx, Ty) ≤ φ (D(x ,y)), for all x, y ∈ X;                                                                                                                      (1.3.1) 
 
where, D(x, y) = d(x, y) + γ[d(x, Tx) + d(y, Ty)], 0 ≤ γ ≤ 1. 
 
Then T has a unique fixed point. 
 
But we observe that the above result (1.3.1) of Prudhvi [14] is not really a result in Cone Metric Spaces since (1.3.1) is 
not meaningful, φ being real valued. In this paper however, we prove a metric space version of the result of Prudhvi  
[14] without using continuity of  the self map. 
 
2. MAIN RESULT  
 
In this section we prove the metric space version of Theorem 1.3 without assuming continuity of T. 
 
2.1 Theorem 
                 
Let T be an asymptotically regular self-mapping on a complete metric space (X, d) satisfying the following condition: 
 
there exist  γ ∈ [ 0,1) and   φ ∈ Ф such that 
 
d(T x, T y) ≤ φ (D(x ,y)), for all x , y ∈ X;                                           …                                                                    (2.1.1) 
 
where D(x, y) = d(x, y) + γ[d(x, Tx) + d(y, Ty)]. 
 
Then T has a unique fixed point. 
 
Proof: Since T is asymptotically regular, 
 
∃ x0 ∈ X such that d ( Tn x0, T n+1 x0) → 0 as n → ∞ 
 
Write xn = Tn x0 and αn = d (xn, xn+1), n = 1, 2,… 
 
so that αn → 0 as n → ∞ 
 
Let ℇ > 0. Since φ ∈ Φ, ∃ δ ∋ ℇ < δ < 2ℇ such that  
 
ℇ ≤ t < δ ⟹φ ( t ) < ℇ 
 

Since  αn → 0 ∃  N∋ αn  < 𝛿𝛿− ℇ
1+2 𝛾𝛾  

  ∀ n ≥ N 
 
∴ d (xn, xn+1) < 𝛿𝛿− ℇ

1+2 𝛾𝛾  
 <  𝛿𝛿+2 ℇ 𝛾𝛾

1 +2 𝛾𝛾
  ∀ n ≥ N                                                                                                                      (2.1.2) 

 
Now we show that d(xn, xn+k) < 𝛿𝛿+2ℇ 𝛾𝛾

1 +2 𝛾𝛾
             where n ≥ N  and k = 1,2,…                                                              (2.1.3)  

                                                                                
We prove this by induction. 
 
(2.1.3) is true for k = 1 and all n ≥ N,   by (2.1.2) 
 
Suppose d (xn, xn+k) <  𝛿𝛿+2 ℇ 𝛾𝛾

1 +2 𝛾𝛾
  where n≥N and k ≥ 1                                                                                                 (2.1.4)  

                                                      
We prove (2.1.3) for k+1. 
 
We observe that φ (ℇ) < ℇ (∵ φ (ℇ) ≤ φ (t) < ℇ ∀ t ∈ [ℇ, δ)) 
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Now d (xn, xn+k+1) ≤ d(xn, xn+1) + d(xn+1, xn+k+1) 
 
                             < 𝛿𝛿− ℇ

1+2 𝛾𝛾  
 + d(xn+1, xn+k+1)                               …                                                                                (2.1.5) 

 
Now d (xn+1, xn+k+1) = d (Tn+1 x0, Tn+k+1 x0)   
 
                               = d (T (Tn x0), T (Tn+k x0))  
 
                               ≤ φ (D(Tn x0, Tn+k x0))                                                                                                                   (2.1.6)   
 
 
Now, D(Tn x0, Tn+k x0) = d (Tn  x0, T n+k x0) + γ [d ( Tn x0, T (Tn x0)) + d (T n+k x0), T (T n+k  x0))] 
                
                                    = d (Tn x0, Tn+k x0) + γ (αn + αn+1) 
 
                                    < d (Tn x0,  Tn+k  x0) + γ [ 𝛿𝛿− ℇ

1+2 𝛾𝛾  
+ 𝛿𝛿− ℇ

1+2 𝛾𝛾  
] 

 
                                    = d (xn, xn + 1) + 2γ ( 𝛿𝛿− ℇ

1+2 𝛾𝛾  
) 

 
                                    < 𝛿𝛿+2 ℇ 𝛾𝛾

1 +2 𝛾𝛾
 + 2γ ( 𝛿𝛿− ℇ

1+2 𝛾𝛾  
) (by (2.1.4)) 

 
                                    = (𝟏𝟏+𝟐𝟐𝟐𝟐)𝜹𝜹

𝟏𝟏+𝟐𝟐 𝟐𝟐
 = δ 

 
∴ D (Tn x0, Tn+k x0) < δ 
 
Case (i):  ℇ≤ D (Tn x0, Tn+k x0). Then  
 
 φ (D (Tn x0, Tn+k x0)) < ℇ (∵ φ ∈ Φ) 
 
∴ d ( xn , xn+k+1) < 𝛿𝛿− ℇ

1+2 𝛾𝛾  
 + ℇ = 𝛿𝛿+2 ℇ 𝛾𝛾

1 +2 𝛾𝛾
  (from (2.1.5)) 

 
Case (ii):  ℇ > D (Tn x0, Tn+k x0).  Then  
 
d (xn, xn+k+1) < 𝛿𝛿− ℇ

1+2 𝛾𝛾  
+d (xn+1, xn+k+1) 

 
                    < 𝛿𝛿−ℇ 

1+2 𝛾𝛾  
 + φ (D (Tn x0, Tn+k x0)) (from (2.1.6) 

 
                    ≤ 𝛿𝛿− ℇ

1+2 𝛾𝛾  
 + φ (ℇ)   (∵ φ is increasing) 

 
                    <  𝛿𝛿− ℇ

1+2 𝛾𝛾  
 + ℇ = 𝛿𝛿+2 ℇ 𝛾𝛾

1 +2 𝛾𝛾
 

 
d (xn, xn+k+1) <  𝛿𝛿+2 ℇ 𝛾𝛾

1 +2 𝛾𝛾
 

 
∴  by induction,  d(xn, xn+k ) <

𝛿𝛿+2 ℇ 𝛾𝛾
1 +2 𝛾𝛾

,  n≥N  and k = 1,2,… 
 
∴ {xn} is a Cauchy sequence in X. 
 
Since X is a complete metric space, {xn} converges to a point x ∈ X  
 
Now d (Tx, xn+1) = d (Tx, Txn)  
 
                           ≤ φ (D(x, xn))  
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D (x, xn) = d(x, xn) + γ[d (x, Tx) + d (xn, T xn)] 
 
               = d(x, xn) + γ[d (x, Tx) + d (xn,  xn+1)] 
 
                       → γ d (x , T x) as n → ∞ 
 
∴   D(x, xn) < γ d (x, Tx) + η where η > 0, for large n 
 
∴   d (Tx, xn+1) ≤  φ (γ d (x, Tx) + η) 
 
On letting n → ∞, d(x, Tx) ≤ φ(γd (x, Tx )+ η) 
 
                                           < γ d(x, Tx) + η  for small η > 0,  (since  0 ≤ γ < 1) 
 
∴   d( x, Tx) = 0 
 
∴ x = Tx 
 
∴   x is a fixed point of T 
 
Uniqueness:  Let w be another fixed point of T. 
 
Then   d (x, w) = d (Tx, Tw)  
 
                        ≤ φ (D (x, w))  
 
                        = φ [d (x, w) + γ (d (x, Tx) + d (w, T w))] 
 
                        = φ [d (x, w) + γ (d (x, x) + d (w, w))] 
 
                        ≤ φ [d (x, w)] 
 
                        < d (x, w)       (∵ φ (ℇ) < ℇ) 
 
which is a contradiction,  if   x ≠ w 
                              
  ∴ x = w 
 
Thus, T has a unique fixed point. 
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