International Research Journal of Pure Algebra -3(12), 2013, 362-369
 Available online through www.rjpa.info ISSN 2248-9037

SUBORBITAL GRAPHS AND THEIR PROPERTIES FOR UNORDERED PAIRS IN $A_{n}(n=5,6,7,8)$ THROUGH RANK AND SUBDEGREE DETERMINATION

Kinyanjui J. N. ${ }^{1}$, Musundi S. W. ${ }^{2}$, Rimberia J. ${ }^{3}$, Mwenda E 4. and Ruto P. K. ${ }^{5}$
1,2,4Chuka University, P. O. Box 109-60400, Kenya.
${ }^{3}$ Department of Mathematics, Kenyatta University, P. O. Box 43844-00100, Nairobi.
${ }^{5}$ Ministry of Devolution \& Planning, P. O. Box- 70-50205, Webuye.

(Received on: 24-11-13; Revised \& Accepted on: 18-12-13)

Abstract

In this paper, through computation of the rank and subdegrees of alternating group $A_{n}(n=5,6,7,8)$ on unordered pairs we construct the suborbital graphs corresponding to the suborbits of these pairs. When $A_{n}(n \geq 5)$ acts on unordered pairs the suborbital graphs Γ_{1} and Γ_{2} corresponding to the non-trivial suborbits Δ_{1} and Δ_{2} are found to be connected, regular and have undirected edge. Further, we investigate properties of the suborbital graphs constructed.

Mathematics Subject Classification: 06A75; 20G07; $20 B 05$.
Key Words: Rank, subdegrees, unordered pair of an alternating group, suborbital graphs.

1. PRELIMINARIES

1.1 Basic notions and terminology

We first present some basic notions and terminologies as used in the context of graphs and suborbital graphs that shall be used in the sequel
A_{n}-Alternating group of degree n and order $\frac{n!}{2}$;
| G | -The order of a group G;
$X^{(2)}$-The set of an unordered pairs from set $X=\{1,2, \ldots, n\}$;
$\{t, q\}$-Unordered pair;
Definition: 1.1.1 A graph is a diagram consisting of a set V whose elements are called vertices, nodes or points and a set E of unordered pairs of vertices called edges or lines. We denote such a graph by $G(V, E)$ or simply by G if there is no ambiguity of V and E.

Definition: 1.1.2 Two vertices u and v of a graph $G(V, E)$ are said to be adjacent if there is an edge joining them. This is denoted by $\{u, v\}$ and sometimes by $u v$. In this case u and v are said to be incident to such edge.

Definition: 1.1.3 A graph consisting of one vertex and no edge is called a trivial graph.
Definition: 1.1.4 A graph whose edge set is empty is called a null graph.
Definition: 1.1.5 The degree (valency) of a vertex v of $G(V, E)$ is the number of edges incident to v.
Definition: 1.1.6 A graph $G(V, E)$ is said to be connected if there is a path between any two of its vertices.
Definition: 1.1.7 The girth of a graph $G(V, E)$ is the length of the shortest cycle if any in $G(V, E)$.
Definition: 1.1.8 A graph in which every vertex has the same degree is called a regular graph.

[^0]
Kinyanjui J. N. ${ }^{1}$, Musundi S. W. ${ }^{2^{*}}$, Rimberia J. ${ }^{3}$, Mwenda E ${ }^{4}$. and Ruto P. K. ${ }^{5}$ / Suborbital Graphs And Their Properties For

 Unordered Pairs $\operatorname{In} A_{n}(n=5,6,7,8)$ Through Rank And Subdegree Determination/IRJPA- 3(12), Dec.-2013.Definition: 1.1.9 Let G be transitive on X and let G_{x} be the stabilizer of a point $x \in X$. The orbits $\Delta_{0}=\{x\}$, $\Delta_{1}, \Delta_{2}, \ldots, \Delta_{r-1}$ of G_{x} on X are called the suborbits of G. The rank of G is r and the sizes
$\mathrm{n}_{i}=\left|\Delta_{1}\right|(i=0,1,2, \ldots, r-1)$ often called the lengths of the suborbits, are known as subdegrees of G.
It is worth noting that both r and the cardinalities of the suborbits $\Delta_{i}(i=0,1,2, \ldots, r-1)$ are independent of the choice of $x \in X$.

Definition: 1.1.10 Let Δ be an orbit of G_{x} on X. Define $\Delta^{*}=\{g x \mid g \in G, x \in g \Delta\}$, then Δ^{*} is also an orbit of G_{x} and is called the G_{x}-orbit (or the G - suborbit) paired with Δ. Clearly $|\Delta|=\left|\Delta^{*}\right|$

If $\Delta^{*}=\Delta$, then Δ is called a self-paired orbit of G_{x}.
Theorem: 1.1.11(Sims 1967, [6]) Let Γ_{i}^{*} be the suborbital graph corresponding to the suborbital O_{i}^{*}. Let the suborbits $\Delta_{i}(i=0,1, \ldots, r-1)$ correspond to the suborbital O_{i}. Then Γ_{i} is undirected if Δ_{i} is self-paired and is directed if Δ_{i} is not self-paired.

1.2 INTRODUCTION

In 1967, Sims[6] introduced suborbital graphs corresponding to the non-trivial suborbits of a group. He called them orbitals. In1977, Neumann [4] extended the work of Higman [2] and Sims [6] to finite permutation groups, edge coloured graphs and Matrices. He constructed the famous Peterson graph as a suborbital graph corresponding to one of the nontrivial suborbits of S_{5} acting on unordered pairs from the set $X=\{1,2,3,4,5\}$. The Peterson graph was first introduced by Petersen in 1898 [5].

In199, Kamuti[3] devised a method for constructing some of the suborbital graphs of $\operatorname{PSL}(2, q)$ and $P G L(2, q)$ acting on the cosets of their Maximal dihedral sub-groups of orders $q-1$ and $2(q-1)$ respectively. This method gave an alternative way of constructing the Coxeter graph which was first constructed by Coxeter in 1986[1]. In this paper, through computation of the rank and subdegrees of alternating group $A_{n}(n=5,6,7,8)$ on unordered pairs we construct the suborbital graphs corresponding to the suborbits of these pairs and further investigate properties of the suborbital graphs constructed.

2. SUBORBITAL GRAPHS OF $G=A_{n}$ ACTING ON X ${ }^{(2)}$

In this section we construct and discuss the properties of the suborbital graphs of $G=A_{n}$ acting on $\mathrm{X}^{(2)}$.

2.1 The suborbital graphs of $G=A_{5}$ acting on $X^{(2)}$

The three orbits of $G_{\{1,2\}\}}$ acting on $\mathrm{X}^{(2))}$ are;
$\operatorname{Orb}_{G_{\{1,2\}}}\{1,2\}=\{\{1,2\}\}=\Delta_{0}$, the trivial orbit.
$\left.\operatorname{Orb}_{G_{\{1,2\}}}\{1,3\}=\{1,3\},\{1,4\},\{1,5\},\{2,3\},\{2,4\},\{2,5\}\right\}=\Delta_{1}$, the set of all unordered pairs containing exactly one of 1 and 2.
$\operatorname{Orb}_{\mathrm{G}_{\{1,2\}}}\{3,4\}=\{\{3,4\},\{3,5\},\{4,5\}\}=\Delta_{2}$, the set of all unordered pairs containing neither 1 nor 2.
The suborbital graph corresponding to Δ_{0} is the null graph since its edge set is empty.
We now consider the non-trivial suborbit Δ_{1} and Δ_{2}. By Definition1.1.10, Δ_{1} and Δ_{2} are self-paired and hence by Theorem 1.1.11 their corresponding suborbital graphs Γ_{1} and Γ_{2} are undirected.

The suborbital O_{1} corresponding to the suborbit Δ_{1} is, $O_{1}=\{(g\{1,2\}, g\{1,3\}) \mid g \in G\}$. Thus the corresponding suborbital graph Γ_{1} has two 2 - elements subsets S and T from $X=\{1,2,3,4,5\}$ adjacent if and only if $|S \cap T|=1$.

Similarly the suborbital O_{2} corresponding to the suborbit Δ_{2} is $O_{2}=\{(g\{1,2\}, g\{3,4\}) \mid g \in G]$. Thus the corresponding suborbital graph Γ_{2} has two 2 - elements subset S and T from
$X=\{1,2,3,4,5\}$ Adjacent if and only if $|S \cap T|=0$.

Kinyanjui J. N. ${ }^{1}$, Musundi S. W. ${ }^{2 *}$, Rimberia J. ${ }^{3}$, Mwenda E ${ }^{4}$. and Ruto P. K. ${ }^{5}$ / Suborbital Graphs And Their Properties For Unordered Pairs $\operatorname{In} A_{n}(n=5,6,7,8)$ Through Rank And Subdegree Determination/IRJPA- 3(12), Dec.-2013.

Figure 2.1.1: The suborbital graph Γ_{1} corresponding to the suborbit Δ_{1} of $G=\mathrm{A}_{5}$ on $X^{(2)}$

From the diagram we see that Γ_{1} is regular of degree 6 , it is a connected graph and has girth 3 since $\{1,2\},\{1,3\}$ and $\{2,3\}$ are joined by a closed path.

Figure 2.1.2 (a): The suborbital graph Γ_{2} corresponding to the suborbit Δ_{2} of $G=A_{5}$ on $X^{(2)}$

We see that Γ_{1} is regular of degree 3 . It is a connected graph of girth 5 since there exist a path joining vertices $\{1,2\}$, $\{3,5\},\{2,4\},\{1,5\}$ and $\{3,4\}$.

It can also be represented as shown in the figure below;
Figure 2.1.2 (b): The suborbital graph Γ_{2} corresponding to the suborbit Δ_{2} of $G=A_{5}$
(1,2)

Kinyanjui J. N. ${ }^{1}$, Musundi S. W..$^{2^{*}}$, Rimberia J. ${ }^{3}$, Mwenda E ${ }^{4}$. and Ruto P. K. ${ }^{5}$ / Suborbital Graphs And Their Properties For

 Unordered Pairs $\operatorname{In} A_{n}(n=5,6,7,8)$ Through Rank And Subdegree Determination/IRJPA- 3(12), Dec.-2013.The suborbital graph Γ_{2} is the famous Petersen graph and is regular of degree 3. It is a connected graph and its girth is 5 since there exists a cycle through $\{1,2\},\{3.5\},\{2,4\},\{1,5\}$ and $\{3,4\}$.

2.2 The suborbital graphs of $\boldsymbol{G}=\mathrm{A}_{6}$ acting on $\boldsymbol{X}^{(2)}$

The orbits of $G_{\{1,2\}}$ acting on $X^{(2)}$ are;
$\operatorname{Orb}_{G_{\{1,2\}}}\{1,2\}=\{\{1,2\}\}=\Delta_{0}$, the trivial orbit.
$\operatorname{Orb}_{\mathrm{G}_{\{1,2\}}}\{1,3\}=\{\{1,3\},\{1,4\},\{1,5\},\{1,6\},\{2,3\},\{2,4\},\{2,5\},\{2,6\}\}=\Delta_{1}$, the set of all unordered pairs containing exactly one of 1 and 2 .
$\operatorname{Orb}_{\mathrm{G}_{\{1,2\}}}\{3,4\}=\{\{3,4\},\{3,5\},\{3,6\},\{4,5\},\{4,6\},\{5,6\}\}=\Delta_{2}$, the set of all unordered pairs containing neither 1 nor 2.
We now discuss the suborbital graphs corresponding to these suborbits. The suborbital graph corresponding to Δ_{0} is the null graph.

Next we consider the non-trivial suborbits Δ_{1} and Δ_{2}. By Definition 1.1.10, Δ_{1} and Δ_{2} are self-paired and hence by Theorem 1.1.11 their corresponding suborbital graphs Γ_{1}, and Γ_{2}, are undirected.

The suborbitalO ${ }_{1}$ corresponding to the suborbit Δ_{1} is $\mathrm{O}_{1}=\{(g\{1,2\}, g\{1,3\}) \mid g \epsilon G\}$. Thus thecorresponding suborbital graph Γ_{1} has two $2-$ elements subsets S and T from $X=\{1,2,3,4,5,6\}$ adjacent if and only if $|S \cap T|=1$.

Similarly the suborbital O_{2} corresponding to the suborbit Δ_{2} is $\mathrm{O}_{2}=\{(g\{1,2\}, g\{3,4\}) \mid g \epsilon G\}$. Thus the corresponding suborbital graph Γ_{2} has two 2 - elements subsets S and T from
$X=\{1,2,3,4,5,6\}$ adjacent if and only if $|S \cap T|=0$.
The properties of the suborbital graph Γ_{1} and Γ_{2} can be investigated by constructing these as follows;
Figure 2.2.1: The suborbital graph Γ_{1} corresponding to the suborbit Δ_{1} of $G=\mathrm{A}_{6}$ on $X^{(2)}$

Clearly Γ_{1} is regular of degree 8 and is a connected graph. Its girth is 3 since $\{1,2\},\{1,4\}$, and $\{2,4\}$ are joined by a closed path.

Kinyanjui J. N. ${ }^{1}$, Musundi S. W..$^{2^{*}}$, Rimberia J. ${ }^{3}$, Mwenda E ${ }^{4}$. and Ruto P. K. ${ }^{5}$ / Suborbital Graphs And Their Properties For

 Unordered Pairs $\operatorname{In} A_{n}(n=5,6,7,8)$ Through Rank And Subdegree Determination/IRJPA- 3(12), Dec.-2013.Figure 2.2.2: The suborbital graph Γ_{2} corresponding to the suborbit Δ_{2} of $G=\mathrm{A}_{6}$ on $X^{(2)}$

From the diagram we see that Γ_{2} is regular of degree 6 and is connected. Its girth is 3 since $\{1,2\},\{5,6\}$ and $\{3,4\}$ are joined by a closed path.

2.3 The suborbital graphs of $G=A_{7}$ acting $X^{(2)}$

The orbits of $\mathrm{G}_{\{1,2\}}$ acting on $\mathrm{X}^{(2)}$ are;
$\operatorname{Orb}_{G_{\{1,2\}}}\{1,2\}=\{1,2\}=\Delta_{0}$, the trivial orbit.
$\operatorname{Orb}_{G_{\{1,2\}}}\{1,3\}=\{\{1,3\},\{1,4\},\{1,5\},\{1,6\},\{1,7\},\{2,3\},\{2,4\},\{2,5\},\{2,6\},\{2,7\}\}=\Delta_{1}$, the set of all unordered pairs containing exactly one of 1 and 2 .
$\operatorname{Orb}_{G_{\{1,2\}}}\{3,4\}=\{\{3,4\},\{3,5\},\{3,6\},\{3,7\},\{4,5\},\{4,6\},\{4,7\},\{5,6\},\{5,7\},\{6,7\}\}=\Delta_{2}$, the set of all unordered pairs containing neither 1 nor 2 .

Next we the discuss suborbital graphs corresponding to these suborbits. The suborbital graph corresponding to Δ_{0} is the null graph.

We now consider the non-trivial suborbits Δ_{1} and Δ_{2}. By Definition 1.1.10 Δ_{1} and Δ_{2} are self-paired and hence by Theorem 1.1.11 their corresponding suborbital graphs Γ_{1} and Γ_{2} are undirected.

The suborbital O_{1} corresponding to the suborbit Δ_{1} is $O_{1}=\{(g\{1,2\}, g\{1,3\}) \mid g \epsilon G\}$. Thus the corresponding suborbital graph Γ_{1} has two 2 - elements subsets S and T from $X=\{1,2,3,4,5,6,7\}$ adjacent if and only if $|S \cap T|=1$.

Similarly the suborbital O_{2} corresponding to the suborbit Δ_{2} is $O_{2}=\{(g\{1,2\}, g\{3,4\}) \mid g \epsilon G\}$. Therefore the corresponding suborbital graph Γ_{2} has two 2 - elements subsets S and T from $X=\{1,2,3,4,5,6,7\}$ adjacent if and only if $|S \cap T|=0$.The properties of the suborbital graph Γ_{1} and Γ_{2} can be studied by constructing them as follows;

Kinyanjui J. N. ${ }^{1}$, Musundi S. W. ${ }^{2^{*}}$, Rimberia J. ${ }^{3}$, Mwenda E ${ }^{4}$. and Ruto P. K. ${ }^{5}$ / Suborbital Graphs And Their Properties For

 Unordered Pairs $\operatorname{In} A_{n}(n=5,6,7,8)$ Through Rank And Subdegree Determination/IRJPA- 3(12), Dec.-2013.Figure 2.3.1: The suborbital graph Γ_{1} corresponding to the suborbit Δ_{1} of $G=\mathrm{A}_{7}$ on $X^{(2)}$

From the figure above we see that Γ_{1} is regular of degree 10 . It is also connected and has girth 3 since $\{1,2\},\{1,3\}$ and $\{2,3\}$ are joined by a closed path.

Figure 2.3.2: The suborbital graph Γ_{2} corresponding to the suborbit Δ_{2} of $G=\mathrm{A}_{7}$ on $X^{(2)}$

From the figure above we see that Γ_{2} is regular of degree 10. It is a connected graph of girth 3 since there exist a cycle through vertices $\{1,2\},\{6,7\}$ and $\{4,5\}$.

2.4 The suborbital graph of $G=\mathrm{A}_{8}$ acting on $X^{(2)}$

The three orbits of $\mathrm{G}_{\{1,2\}}$ acting on $X^{(2)}$ are;
$\operatorname{Orb}_{G_{\{1,2\}}}\{1,2\}=\{\{1,2\}\}=\Delta_{0}$, the trivial orbit.
$\operatorname{Orb}_{\mathrm{G}_{\{1,2\}}}\{1,3\}=\{\{1,3\},\{1,4\},\{1,5\},\{1,6\},\{1,7\},\{1,8\},\{2,3\},\{2,4\},\{2,5\},\{2,6\},\{2,7\}$,
$\{2,8\}=\Delta_{1}$, the set of all unordered pairs containing exactly one of 1 and $2 .=\Delta_{1}$
$\operatorname{Orb}_{\mathrm{G}_{\{1,2\}}}\{3,4\}=\left\{\{3,4\},\{3,5\},\{3,6\},\{3,7\},\{3,8\},\{4,5\},\{4,6\},\{4,7\},\{4,8\},\{5,6\},\{5,7\},\{5,8\},\{6,7\},\{6,8\},\{7,8\}=\Delta_{2}\right.$. the set of all unordered pairs containing neither 1 nor 2.

Kinyanjui J. N. ${ }^{1}$, Musundi S. W. ${ }^{2 *}$, Rimberia J. ${ }^{3}$, Mwenda E ${ }^{4}$. and Ruto P. K. ${ }^{5}$ / Suborbital Graphs And Their Properties For

 Unordered Pairs $\operatorname{In} A_{\boldsymbol{n}}(\boldsymbol{n}=\mathbf{5}, 6,7,8)$ Through Rank And Subdegree Determination/IRJPA- 3(12), Dec.-2013.Next we discuss the suborbits Δ_{0}, Δ_{1} and Δ_{2} and their corresponding suborbital graphs.
The suborbital graph corresponding to Δ_{0} is the null graph. We next consider the suborbits Δ_{1} and Δ_{2}, the non-trivial orbits.

By Definition 1.1.10, Δ_{1} and Δ_{2} are self-paired and hence by Theorem 1.1.11 their corresponding suborbital graphs Γ_{1} and Γ_{2} are undirected. The suborbitalO ${ }_{1}$ corresponding to the suborbit Δ_{1} is $0_{1}=\{(g\{1,2\}, g\{1,3\}) \mid g \in G\}$. Thus the corresponding suborbital graph Γ_{1} has two 2 - elements subsets S and T from $X=\{1,2,3,4,5,6,7,8\}$ adjacent if and only if $|S \cap T|=1$.

Similarly the suborbital O_{2} corresponding to the suborbit Δ_{2} is $\mathrm{O}_{2}=\{(g\{1,2\}, g\{3,4\}) \mid g \in G\}$. Therefore the corresponding suborbital graph Γ_{2} has two elements subsets S and T from $X=\{1,2,3,4,5,6,7,8\}$ adjacent if and only if $|S \cap T|=0$.

The properties of the suborbital graph Γ_{1} and Γ_{2} can be studied by constructing themas follows;
Figure 2.4.1: The suborbital graph Γ_{1} corresponding to the suborbit Δ_{1} of $G=\mathrm{A}_{8}$ on $X^{(2)}$

From the diagram, we see that Γ_{1} is regular of degree 12 . It is a connected graph and has girth 3 since $\{3,4\},\{3,5\}$ and $\{4,5\}$ are joined by a closed path.

Figure 2.4.2: Suborbital graph Γ_{2} corresponding to the suborbit Δ_{2} of $G=\mathrm{A}_{8}$ on $X^{(2)}$

Kinyanjui J. N. ${ }^{1}$, Musundi S. W. $^{2}{ }^{*}$, Rimberia J. ${ }^{3}$, Mwenda E^{4}. and Ruto P. K. ${ }^{5}$ / Suborbital Graphs And Their Properties For Unordered Pairs $\operatorname{In} A_{\boldsymbol{n}}(n=5,6,7,8)$ Through Rank And Subdegree Determination/IRJPA- 3(12), Dec.-2013.

Clearly Γ_{2} is regular of degree 15 and is a connected graph and its girth is 3 since $\{1,2\},\{7,8\}$ and $\{3,4\}$ are joined by closed path.

REFERENCES

[1]. Coxeter, H. S. M. 1986. My graph, Proceedings of London Mathematical Society 46: 117 - 135.
[2]. Higman, D. G. 1964. Finite permutation groups of rank 3.Math.Zeitschrifl 86: 145 - 156.
[3]. Kamuti, I. N. 1992. Combinatorial formulas, invariants and structures associated with primitive permutation representations of PSL $(2, q)$ and $\operatorname{PGL}(2, q)$. PhD. Thesis, University of Southampton, U.K.
[4]. Neumann, P. M. 1977. Finite permutation groups Edge - coloured graphs and matrices, edited by M. P. J. Curran, Academic Press, London.
[5]. Petersen, J. 1898. Sur le. Theore'me de Tait Intermed Math 5: 225 - 227. Sims, C.C. 1967.Graphs and Finite permutation group.Math.Zeitschrift95: 76-86.

Source of Support: Nil, Conflict of interest: None Declared

[^0]: *Corresponding author: Musundi S. W. ${ }^{2}$
 1, 2,4Chuka University, P. O. Box 109-60400, Kenya.

