International Research Journal of Pure Algebra -3(12), 2013, 370-374

Available online through www.rjpa.info ISSN 2248-9037

PRIMARY L-FUZZY IDEALS

K. Swamy*

Assistant Professor in Mathematics, Aditya Engineering College, Surampalem, Peddapuram-533437, Andhra Pradesh, India.

G. V. Ramana

Assistant Professor in Mathematics, Aditya Engineering College, Surampalem, Peddapuram-533437, Andhra Pradesh, India.

A. V. S. N. Murty

Professor in Mathematics, Aditya Engineering College, Surampalem, Peddapuram-533437, Andhra Pradesh, India.

(Received on: 05-12-13; Revised & Accepted on: 18-12-13)

ABSTRACT

In this paper it is studied that the concepts of primary L-fuzzy ideal and primary L-fuzzy ideal belonging to a prime L-fuzzy ideal [1]. Also it is proved that every Prime L-Fuzzy Ideal is a Primary L-Fuzzy Ideal but the converse is not true. Throughout this paper, X stands for a commutative ring with identity and L stands for a complete distributive lattice.

Keywords: L-Fuzzy Subset, L-Fuzzy Ideal, Prime L-Fuzzy Ideal, Primary L-Fuzzy Ideal.

1. INTRODUCTION

The concept of fuzzy subset was studied by L. A. Zadeh [4] generalizing the idea of characteristic function. By a fuzzy subset of a set X, we mean any function from X into the closed interval [0,1]. In the paper [6], J. A. Goguen replaced the valuation set [0, 1], by a complete lattice attempting to make a generalized study of fuzzy set theory by studying L fuzzy sets (where L is a complete lattice). A. Rosenfeld in his paper [3], studied fuzzy groups. Wang-Jin Liu [8] and Zhang Yue and Peng Xingtu [10] studied Fuzzy ideals, Prime ideals, Maximal ideals on a ring.

2. PRELIMINARIES

Definition: 2.1 (L-Fuzzy set) A function A: $X \rightarrow L$ is called an L-Fuzzy subset of X. The set of all L-Fuzzy sets in X is denoted by F(X).

Definition: 2.2 [L-Fuzzy sub ring] An L-fuzzy subset A of a ring X is said to be an L-fuzzy subring of X if it satisfies the following

- 1) $A(x) \wedge A(y) \le A(x-y)$ for all $x, y \in X$
- 2) $A(x) \wedge A(y) \leq A(xy)$ for all $x, y \in X$.

Definition: 2.3 [L-fuzzy Ideal] Let X=(X, +, .) be a ring. An L-fuzzy subset A of X is called an L-fuzzy ideal iff

- 1) $A(x) \wedge A(y) \le A(x-y)$ for all $x, y \in X$.
- 2) $A(x) \lor A(y) \le A(xy)$ for all $x, y \in X$.

Note: The set of all L-fuzzy ideals in X is denoted by I(X).

Definition: 2.4 [Level Set] Let A be an L-fuzzy set in X. For $t \in L$, we define $A_t = \{x \in X \mid A(x) \ge t\}$.

Here A_t is called the t-cut (or a level subset) of A.

K. Swamy*, G. V. Ramana and A. V. S. N. Murty / PRIMARY L-FUZZY IDEALS/IRJPA- 3(12), Dec.-2013.

Proposition: 2.5 Let X be a ring and $A \in F(X)$, $A \neq 0$. Then $A \in I(X)$ iff the level subset A_t , for any $t \in L$ with $t \leq A$ (θ) $(\neq 0)$, where θ is the zero element in X, is an ideal of X.

Theorem: 2.6 Let N be an arbitrary ideal of a ring X. Then there exists $A \in I(X)$ and $t \in L$ such that $A_t = N$.

Definition: 2.7: Let A be an L-fuzzy sub ring of a ring X. Then the set

 $X_A = \{x \in X \mid A(x) = A(\theta)\}\$ is called a base set of A (Where θ is the zero element in X).

Proposition: 2.8 If $A \in I(X)$ then the base set X_A is an ideal of X.

Definition: 2.9 Let $A \in I(X)$. A is said to be a prime L-fuzzy ideal, if for a ,b $\in X$,

 $A(a.b) = A(\theta)$ implies $A(a) = A(\theta)$ or $A(b) = A(\theta)$ (where θ is the zero element of ring X).

Proposition: 2.10 Let P be a prime L-fuzzy ideal, and suppose that

 $P(a_1 a_2 \dots a_n) = P(\theta)$. Then for at least one value of i, we have $P(a_i) = P(\theta)$.

Proof: Let P be a prime L-fuzzy ideal.

Suppose that $P(a_1a_2...a_n) = P(\theta)$ and $P(a_i) \neq P(\theta)$ for all i.

We shall obtain a contradiction.

We have $P(a_1(a_2, \dots, a_n)) = P(\theta)$ and $P(a_1) \neq P(\theta)$.

Since P is prime L-fuzzy ideal, we have $P(a_2a_3...a_n) = P(\theta)$.

Again P $(a_2(a_3, \dots, a_n)) = P(\theta)$ and $P(a_2) \neq P(\theta)$.

Since P is prime L-fuzzy ideal, we have $P(a_3a_4...a_n) = P(\theta)$.

Continuing this process, finally we get $P(a_n) = P(\theta)$.

This is a contradiction.

Hence $P(a_i) = P(\theta)$ for some i.

The following is the straight forward verification.

Proposition: 2.11 Let $f: X \to Y$ be an epimorphism of rings and P be a Prime L-fuzzy ideal of Y. Then $f^{-1}(P)$ is a Prime L-fuzzy ideal of X.

3. PRIMARY L-FUZZY IDEALS

Definition: 3.1 (Primary L-fuzzy ideal) Let A be an L-fuzzy ideal of X. Then A is called a Primary L-fuzzy ideal of X, if for a, $b \in X$, A $(ab) = A(\theta)$ and $A(a) \neq A(\theta)$ implies $A(b^n) = A(\theta)$ for some positive integer n.

Note: 3.2 In fact, A is primary L-fuzzy ideal means, its base set X_A is primary ideal of X.

The following theorem can be easily proved

Theorem: 3.3 Every prime L-fuzzy ideal is a primary L-fuzzy ideal.

The converse of the above theorem is not true. i.e., every primary L-fuzzy ideal of a ring X is not prime L-fuzzy ideal of X. For,

Clearly I=<4>=4Z, the set of all multiples of 4 is a primary ideal in the ring of integers Z but not a prime ideal. We now prove that the characteristic function χ of I is primary L-fuzzy ideal but not prime L-fuzzy ideal.

Let L= $\{0, 1\}$ be a lattice. Define $\chi : Z \rightarrow L$ by

$$\chi(a) = \begin{cases} 1 & \text{if } a \in I \\ 0 & \text{if } a \notin I \end{cases}$$

Clearly, χ is an L-fuzzy subset of Z.

We now prove that χ is an L-fuzzy ideal of Z. For this we have to prove that

- 1) $\chi(a) \wedge \chi(b) \leq \chi(a-b)$
- 2) $\chi(a) \vee \chi(b) \leq \chi(ab)$, for all $a, b \in Z$

Here four cases arise

- i) $a \in I, b \notin I$
- ii) $\alpha \notin I, b \in I$
- iii) $a \in I$, $b \in I$
- iv) $\alpha \notin I, b \notin I$.
- 1) Each of the cases i), ii) and iv): $\chi(a) \wedge \chi(b) = 0$. Since $\chi(x) = 0$ or 1 for any $x \in X$, $\chi(a-b) \ge 0 = \chi(a) \wedge \chi(b)$.

Case iii): i.e., $a \in I$, $b \in I$: So, $a - b \in I$.

$$\chi(a) \wedge \chi(b) = 1 \wedge 1 = 1 = \chi(a-b).$$

2) Each of the cases i), ii) and iii): clearly χ (a) $\vee \chi$ (b) = 1. Since I is an ideal, $ab \in I$. So χ (ab) = 1 = χ (a) $\vee \chi$ (b).

Case iv): Clearly χ (a) =0 = χ (b) and hence χ (ab) \geq 0 = χ (a) \vee χ (b).

Thus χ is an L-fuzzy ideal of Z.

Now, we have to prove that χ is a primary L-fuzzy ideal.

Let a, $b \in \mathbb{Z}$ and χ (ab) = χ (0)=1. So, $ab \in \mathbb{I} = <4>$.

If $a \in I$ then it is clear.

If $a \notin I$, then $b^n \in I$ for some n > 0 (since I = <4> is primary ideal in Z) and hence $\chi(b^n) = 1 = \chi(0)$.

Hence χ is a primary L-fuzzy ideal of Z. Now,

 χ is not prime L-fuzzy ideal, for; χ (2.6) =1 but χ (2) \neq 1 and χ (6) \neq 1.

Theorem: 3.4 Let $A \in I(X)$ and $A(e) \neq A(\theta)$ (where 'e' is the unit element of the ring X). The following three statements are equivalent.

- 1) A is primary L-fuzzy ideal.
- 2) X_A is a primary ideal.
- 3) Every Zero divisor in the residue class ring X/X_A is nilpotent.

Proof: 1⇔2: Assume that A is primary L-fuzzy ideal.

Let $ab \in X_A$ and $a \notin X_A$.

i.e.,
$$A(ab) = A(\theta)$$
 and $A(a) \neq A(\theta)$.

Since A is primary L-fuzzy ideal, A $(b^n) = A(\theta)$ for some positive integer n.

$$\Rightarrow b^n \in X_{\Delta}$$

Hence X_A is primary ideal. This proves $1 \Rightarrow 2$.

Conversely, assume that (2) holds i.e. X_A is primary ideal.

Let $A(ab) = A(\theta)$ and $A(a) \neq A(\theta)$.

Then $ab \in X_A$ and $a \notin X_A$.

Since X_A is primary ideal, $b^n \in X_A$ (for some positive integer n)

i.e., $A(b^n) = A(\theta)$. Hence A is primary L – fuzzy ideal. This proves $2 \Rightarrow 1$. Thus $1 \Leftrightarrow 2$.

2⇔**3:** Assume that (2) holds i.e. X_A is primary ideal.

Let $x+X_A$ be a zero divisor in the residue class ring X/X_A .

Then there exists $y+X_A \neq 0$ (i.e., $y \notin X_A$)

such that $(x+X_A)(y+X_A)=0+X_A$

$$\Rightarrow$$
 $xy+X_A=0+X_A$

$$\Rightarrow$$
 $xy \in X_A$.

Since $y \notin X_A$ and X_A is primary ideal, $x^n \in X_A$ for some positive integer n

$$\Rightarrow$$
 $x^n + X_A = 0$

$$\Rightarrow$$
 $(x+X_A)^n = 0.$

i.e. $x+X_A$ is a nilpotent element in X/X_A

Therefore every zero divisor in the ring X/X_A is nilpotent.

Conversely assume that 3) holds.

Let $ab \in X_A$ and $a \notin X_A$.

i.e.,
$$ab + X_A = 0 + X_A$$
 and $a+X_A \neq 0 + X_A$.

i.e.,
$$(a+X_A)(b+X_A) = 0$$
 and $a+X_A \neq 0$.

i.e., $b+X_A$ is a zero divisor in X/X_A .

By our assumption, b+X_A is nilpotent.

Therefore $(b+X_A)^n = 0+ X_A$ for some positive integer n.

$$\Rightarrow b^n + X_A = 0 + X_A$$
.

$$\Rightarrow b^n \in X_A$$

Hence X_A is primary ideal. Thus $2 \Leftrightarrow 3$.

REFERENCES

- [1] Zhang Yue, Primer L-Fuzzy Ideals and primary L-Fuzzy ideals, Fuzzy sets and Systems 27(1988) 345-350.
- [2] D.S.Malik and J. N. Mordeson, Fuzzy Commutative Algebra, World Scientific (1988).
- [3] A.Rosenfeld, Fuzzy groups, J. Math Anal, Appl. 35: 512-517(1971).
- [4] L.A.Zadeh, Fuzzy sets Inform and Control 8, 338-348 (1965).
- [5] G.Gratzer, Lattice theory: first concept and distributive lattice by W. H. Freeman and company, San Fransico.
- [6] J.A.Goguen, L Fuzzy sets, J. Math Anal Appl 18(1967) 145-174.

K. Swamy*, G. V. Ramana and A. V. S. N. Murty / PRIMARY L-FUZZY IDEALS/IRJPA- 3(12), Dec.-2013.

- [7] M. F. Atiyah and I. G. MacDonald, Univ. of Oxford, Introduction to Commutative Algebra, Addison-Wesely Publishing Company, 1969.
- [8] Wang-Jin Liu, Fuzzy invariant Subgroups and fuzzy ideals, fuzzy sets and Systems 8(1982): 133-139.
- [9] U. M. Swamy., A. V. S. N. Murty., A TEXT BOOK of "ALGEBRA- ABSTRACT AND MODERN", PEARSON EDUCATION, Jan. 2012.
- [10] Zhang yue and peng Xingtu, the maximum fuzzy ideals and prime fuzzy ideals on ring, fuzzy mathematics (1984) 115-116.

Source of Support: Nil, Conflict of interest: None Declared