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ABSTRACT

The present paper deals with some fixed point and common fixed point theorems in usual complete metric spaces for
new symmetric rational expressions.
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2. INTRODUCTION & PRELIMINARIES:

The study of non-contraction mapping concerning the existence of fixed points draws attention of various authors in
non- linear analysis. It is well known that the differential and integral equations that arise in physical problems are
generally non-linear, therefore the fixed point methods specially Banach’ contraction principle provides a powerful
tool for obtaining the solutions of these equations which were very difficult to solve by any other methods. Recently
Verma [24] described about the application of Banach’s contraction principle [2]. Browder [4] was the first
mathematician to study non-expansive mappings. Meanwhile Brouwder [4] and Ghode [6] have independently
proved a fixed point theorem for non-expansive mapping.

Many other mathematicians viz; Datson [5] Goebel [6], Goebel and Zlotkienwicz [8], Goebel, Kirk and Simi [9], Iseki
[11], Singh and Chatterjee [22], Sharma and Rajput [21], Rajput and Naroliya [20] Pathak and Maity [18], Qureshi and
Singh [19], Sharma and Bhagwan [23], Ahmad and Shakil [1], Shahzad and Udomene [24] have done the
generalization of non-expansive mappings as well as non-contraction mappings. Kirk [15, 16 and 17] gave the
comprehensive survey concerning fixed point theorems for non-expansive mappings. In the present paper we are
proving some fixed point and common fixed point theorems for non contraction mappings in usual metric spaces for
rational expressions which are motivated by Shrivastava, Dwivedi & Bhardwaj[25]

2.1 Usual Metric Space: A metric space (X ,d) is said to be usual metric space if it is defined as 1
cl(x,y):|x—y| Vx,ye X 1,23 ...... ,
Theorem 3.1: - Let (X ,d ) be a complete usual metric space and T : X — X is self mapping;
such that T2 =1 -(3.1.1)
d(x,Tx)d (y,Ty)d (x,Ty)+ [d (x, y)]3
[d(x.y)]
d(y.Ty)d (y.Tx)d (x.Ty)+[d (x.y)]

[d (x, y)]2

+ y[d (x,Tx)+d (y,Ty)]+5[a’ (x,Ty)+d (y,Tx)]+7] d(x,y) ..(3.1.2)

d(Tx,Ty)< «

+p
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If x#y, Vx,ye X,with 10a+9 +8y+50 +1 < 4then T has unique fixed point in X.
Proof: Suppose x be any point in usual metric space X. Taking

y= (T4 1)x 2=T()

a’(z,x)Zd(Ty,sz):‘Ty—sz‘ by def”
|y—Ty| |Tx—x| |y—x|+|y—Tx|3

[Ty—T (Tx)| < -

3
+IB|Tx—x| |Tx—Ty| |y—2x|+|y—Tx|
|y =T
+7[|y—Ty|+|Tx—x|]+5[|y—x|+|Tx—Ty|]+7] |y—Tx|

|y =Ty [T = 2| - o= T # L o= Tof
<a 2 8

l|x—Tx|2
4

|Tx—x| [|Tx—y|+|y—Ty|]1|x—Tx|+|x—Tx|3
+f 2

l|x—Tx|2

4

+}/[|y—Ty|+|Tx—x|J+5{l|x—Tx|+l|x—Tx|+|y—Ty|}+7]l|x—Tx|
2 2 2

:|x—Tx|{%+,b’+7+5+%}+|y—Ty|[2a’+2ﬂ+7+5]
7—X sl a+2[+2y+25+n| |x—Tx|+|y-Ty||2a+2B+y+0 ..(3.1.3
2
Now for |u—x|=|2y—z—x|=|Tx—Ty|
S0[|x—Tx||y—Ty| |x—Ty|+|x—y|3
= 5

|y =19 |y =T | =Ty + [x = [
e[
+7/|:|x—Tx|+|y—Ty|1+§|:|x—Ty|+|y—TxU+7] |x—y|

+5

1 2 1 3
—|x-T. —Ty|l+—|x-T.
e I

l|Jc—Tx|2
4

1 1
|y—Ty| E|x—Tx| 5|Tx—x|+|x— y|3

l|x—Tx|2
4
1 1
+7/[|x—Tx|+|y—Ty|]+5{E|X—Tx|+z|x—Tx|}+% |x—Tx|

= %[a+ﬂ+2y+ Sllx—Tx|+(2a+ B+y)|y-Ty| .(3.1.4)
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Now
|z —u| <[z —x|+|x—u]

S%|x—Tx|[a'+ 2B+2y+28+n|+|y-D|[2a+26+y+ 5]+%|x—Tx|[a+,B+ 2y+6]

+|y-Ty|[2a+ f+7]

:%|x—Tx|[20{+3ﬁ+47+3§+77]+|y—Ty|[40{+3ﬁ+27+5] ..(3.1.5)
On the other hand
|Z—u| = |Ty—(2y—z)|

=[ry-2y+7(y)|
|z —u|=2|Ty -] .(3.16)

Comparing (3.1.5) and (3.1.6)

|Ty—y| S5|Tx—x|
20+3B+4y+35+7

4-(8a+6L+4y+29)

because 10 +94+8y+50+n <4

where s =

LetR :l|T+I , then
2
d(R*(x),R(x))=|R* (x)=R(x)|
=|R(R(x))-R(x)
=[R(y)-)]
=§|y—Ty|
<£|x—Tx|

By the definition of R, we claim that {Rn (x)} in a Cauchy sequence in X. By the completeness of X,{R" (x)}

Converges to some element X, in X. So

lim{R” (x)} =X,

n—eo

So {R(xo )} =%
Hence T'(x,) = x,

So x, is a fixed point of 7.

Uniqueness: If possible let Yy, # X, is another fixed point of T.
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d(xo’yo)=| _Y()|
|x0 Tx0||yo Ty0| |x0 Ty0| |xo yo|
| y0|

+ﬁ|y0 Ty, [ 3o = Txo| [ =Ty | +|%, = y0|
%, y0|
+}/[|x0—Tx0|+|y0—TyO|]+§[|x0—Ty0|+|y0—Tx0|]+77|x0—y0|
X = yo| S (@+ B+25+7)|x, - ¥,
ie.d(x,,y,)<(a+B+25+1)d(x,.,)

Which is a contradiction.
So Xy =Y,

Hence fixed point is unique.
Now we prove common fixed point theorems for two mappings.

Theorem: 3.2 Let K be closed and convex subset of a complete Usual Metric Space X.
LetT : K — K and G : K — K satisfies the following conditions. T and G commute ...(32.1)

T°=1 and G* =1 (3.2.2)
Where [ denotes the identity mapping.
d(Gx,Tx) d(Gy.Ty) d (Gx.Ty)+| d (Gx, Gy)]3
[d(Gx Gy)]
d(Gy.Ty) d(Gy,Ty) d (Gx,Ty) +[d (Gx.Gy) |

[d(Gx, Gy)]
+ 7/[d(Gx,Tx)+d Gy, Ty ]+5[d Gx,Ty)+d(Gy,Tx)]+7] d (Gx,Gy)

d(Tx,Ty) <«

+f

Forevery x,y€ X, &, 5,7,8,n€[0,1] with x# y and d (Gx,Gy) # 0 and 100 +98+8y+55+n < 4

then 7 and G have unique common fixed point.

Proof: Suppose x is point in usual metric space X. We have taken non-contraction mapping. So it is clear that
2

(1G) =

Now

d(Tx.Ty)=d (TG (Gx).TG (Gy)) =|TG (Gx)-TG (Gy)|

G(sz)—T(sz)‘ ‘G(Gzy)—T(Gzy) G (G*x)-T(G*y)|+|G (G*x)-G (G%)|

6(6*x)-G(c*)[

G(Gzy)—T(Gzy)‘ ‘G(Gzy)—T(sz) G(Gx)-T(G*y)|+|G (G*x)-G (G%y)|

+p

‘G(sz)—G(Gzy)r

+7][6(62x) -7 (67x)|+|6 (6°y)-T(6%y)| |+ 6] |6 (67x)-T (G*y)| +|G (G°)-T (G’x)

]

+77 ‘G(sz)—G(Gzy)‘
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|G() TG (Gx)| |G (y)-TG (Gy)| |G (x)-TG (Gy)|+|G (x)- G (v)[
G (x)-G ()
|G(y) TG (Gy)||G (y)-TG (Gx)||G (x)-TG (Gy)|+|G (x)-G (»)]
G (x)-G ()
+7[IG( )-TG (Gx)|+|G (y)-TG (Gy)|]
+8[|G (x)=TG (Gy)|+|G (y)-TG (Gx)||+7 |G (x)-G (v)|
Taking G(x)=p, G(y)=gq, Wherepiq
TG (Gx)-TG (Gy)|=|TG (p)-TG (q)|
_ =16 (P)la =76 (a)| [P ~7G (a)|+|p — af
lp=af
|q TG (q)||a-TG (p)||p-TG (q)|+|p—a|
|p=af
+7[|p-TG (p)|+|a-TG (q)[]
+8[|p-7G (q)|+|a-1G (p)|]+7 |p -4

Taking TG = R we get

|R(P)—R(q)|sa|P—R(l’)| la—R(q)||p-R(q)|+|p—af
lp-af

+ﬁ|q—R(q)| la=R(p)||p—R(q)|+|p-af
lp—af

It is clear by theorem (3.1) that R = TG has at least one fixed point say x, in K.That is
R(xo) =TG(X0)=XO
andso T(TG)(x,)=Tx,
or T*(Gx,)=T(x,)
G(x)=T(x,)

Now
d (Txy,x,)=|Tx, = x,|

= [Tx, =T (x,)|
|Gx0 - Tx,||Gx, =T (Tx, )| |Gx, - Tx,|+|Gx, - G (Tx, )|

|Gx, = G (Tx, )|
|G (Tx,) =T (Tx,)| |G (Tx,) = Tx,| |Gx, = T (T, )| +|Gx, = G (Tx, )|
Gx, = G (Tx, [

+ 7[|Gxy = Tx, |+ |G (Tx, ) =T (Tx, )]
+8[[Gxy =T (Tx,)|+|G (Tx, ) = Tx, |
+7 |Gx, - G (Tx,)|
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Clearly

|Tx0 —x0| < [a’+ﬁ+25+77]|Tx0 —x0|
which is a contradication. Becauseax+ f+2y+n <1
So T (x,)=x,

That is X, is the fixed point of 7.
But T'(x,) = Gx, & G(x,)=x,
Hence it is the common fixed point of 7'and G.

Uniqueness: If possible let y, # X, is another common fixed point of T and G then

d (x5 o) =l = 3ol =[T2 (x) =T (3 )| = [T (T%,) =T (T3,

< a|G(Tx0)—T(Tx0)| |G (Ty,) =T (T, )| |G (Tx,) =T (T3, )| +|G (Tx, ) - G (Ty, )|3
G(Tx,) -G (T, )|

(G (Ty,) =T (T9,)| |G (Ty,) =T (Tx, )| |G (Tx,) = T (,)| +]G (T, ) - G (T, )|
G(Tx,) -G (Ty,)|

+7[|G (Tx,) =T (Tx,)| +|G (T, ) =T (T, )|

+3[G (Tx,) =T (Ty, )| +|G (Ty,) - T (Tx,)| |

+17 |G (Tx,) =G (T, )|

+f

Le.

|x, = yo| <[+ B+28+7]|x, - y,| but a+p+25+n<1
So x, =y,

ie.

d(x()’y()) < d(x()’y())

Which is a contradiction.

So x, =y, i.e. common fixed point is unique.
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