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ABSTRACT 

In this paper, we shall prove general theorems which contain two theorems on the Strong Nörlund summability of the 

orthogonal expansion. 

 

In 1965 Sunouchi G. [9] obtained on the strong summability of orthogonal Series .and in 1967 Sunouchi G.,[10] prove 

the Approximation of Fourier Series and orthogonal Series  

. 

In this paper, we obtain the comparable result of [9] and [10] with general Strong Nörlund summability of orthogonal 

expansion. 
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INTRODUCTION: 

 

Let ( ){ }xnφ  be an orthonormal system of 
2

L -integrable function defined in [ ]ba,  we consider the orthonormal series 
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Where { }np is a sequence of numbers with 00 >p  and 0≥np  for all n . 

 

It is well known that the method ( )npN ,  is regular if and only if, 
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A sequence { }np is said to belong to the class
α

BVM , if { } α
Mpn ∈ and if { }nS is a sequence of bounded variation, 

i.e. 
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Strong approximation of Cesáro means of order 0>α  is obtained by Sunouchi [9],[10], Leindier [3], [4], [5] and  

Kantawala [1], [2] have discussed the strong approximation of N�rlund and Euler means of orthogonal series. 

Sunouchi [9] prove with the strong ( )α,C -summability of orthogonal series for two following theorems: 

 

Theorem A: if the orthogonal series (1) and (2) is ( )1,C -summable to ( )xf  a.e. in [ ]ba,  for any 0>α  and 0> . 

 

Theorem B: if  

( )� ∞<22 loglog mcm . 

 

Then, there exists a square integrable function ( )xf  such that 
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for any 0>α  and 0>r  a.e. in [ ]ba, and for increasing sequence { }vn . 

 

In this paper we shall prove a general theorem on the Strong Nörlund summability of the orthogonal expansion. 

 

Theorem: 1 If the series  
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 is converges, then the orthogonal expansion      
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is summable nn qpn ,.  almost everywhere. 
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Thus we obtain 
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Using the Schwarz’s inequality and the orthogononality, we obtain 
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which is convergent by the assumption and from the Beppo-Leni Lemma we complete the proof. 

 

We need the following corollaries from our theorem. 

 

Corollary 1: [6, 7] If the series  
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 Converges, then the orthogonal series 
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is summable  ( )npN ,  almost everywhere. 

 

Proof: The proof follows from our theorem and the fact that  
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Corollary2: [8] If the series  
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Converges, the the orthogonal series  
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Summable ( )npN ,  almost everywhere. 

 

Proof: The proof follows from theorem 1 and the fact that  
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o r  the application of these corollaries, see Okuyama  [6,7,8] 

 

If we put 
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Then we have the following theorem from theorem 1.  

 

Theorem 2.Let )}({ nΩ be a positive sequence such that }/)({ nnΩ is a non-increasing sequence and the series 
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Proof: We have by Schwarz inequality 
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This completes the proof of theorem 2 from the same reason of the proof of theorem 1. 
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