GENERALIZED ALPHA GENERALIZED CLOSED SETS IN BITOPOLOGICAL SPACES

Qays Hatem Imran*

Al-Muthanna University, College of Education, Department of Mathematics, Al-Muthanna, Iraq.

(Received on: 12-02-14; Revised & Accepted on: 21-02-14)

ABSTRACT

In this paper, we introduce generalized alpha generalized closed sets ($g\alpha g$ - closed sets) in bitopological spaces and basic properties of these sets are analyzed. Further we define and study $g\alpha g$ - continuous mappings in bitopological spaces and some of their properties have been investigated.

Keywords: Bitopological space, ij - $g\alpha g$ - closed set, ij - $g\alpha g$ - open set, ij - $T_{g\alpha g}$ - space, ij - $g\alpha g$ - continuous mappings.

1. INTRODUCTION

A triple (X, τ_1, τ_2) , where X is a non empty set and τ_1, τ_2 are topologies on X is called a bitopological space and J. C. Kelly [2] initiated the study of such spaces . In 1990, M. Jelic [3] introduced the concepts of alpha open sets in bitopological spaces. In 1986, T. Fukutake [6] introduced the concepts of generalized closed sets in bitopological spaces and after that several authors turned their attention towards generalizations of various concepts of topology by considering bitopological spaces. O. A. El-Tantawy and H. M. Abu-Donia [5] introduced alpha generalized closed sets in bitopological spaces. In 2012, V. Seenivasan and S. Kalaiselvi [7] introduced and studied the concepts of generalized semi generalized closed sets in bitopological spaces.

The purpose of this paper is to introduce a new class of closed sets called generalized alpha generalized closed sets ($g\alpha g$ -closed sets) and generalized alpha generalized continuous mappings ($g\alpha g$ - continuous mappings) in bitopological spaces and investigate some of their properties .

2. PRELIMINARIES

Throughout this paper X, Y and Z always represent non empty bitopological spaces (X, τ_1, τ_2) , (Y, σ_1, σ_2) and (Z, ρ_1, ρ_2) on which no separation axioms are assumed unless explicitly mentioned and the integers $i, j, k \in \{1,2\}$.

For a subset A of X τ_i - cl(A) (resp. τ_i - int(A), τ_i - $\alpha cl(A)$) denote the closure (resp. interior, α - closure) of A with respect to the topology τ_i . By (i,j) we mean the pair of topologies (τ_i,τ_i) .

Definition: 2.1 A subset *A* of a bitopological space (X, τ_1, τ_2) is called

(i) $ij - \alpha$ - open [3] if $A \subseteq \tau_i$ - $int(\tau_i - cl(\tau_i - int(A)))$, where $i \neq j; i, j = 1, 2$.

(ii) $ij - \alpha$ - closed [3] if X - A is $ij - \alpha$ - open, where $i \neq j$; i, j = 1, 2.

Equivalently, a subset A of a bitopological space (X, τ_1, τ_2) is called $ij - \alpha$ - closed if $\tau_i - cl(\tau_i - \operatorname{int}(\tau_i - cl(A))) \subseteq A$.

Corresponding author: Qays Hatem Imran
Al-Muthanna University, College of Education, Department of Mathematics, Al-Muthanna, Iraq.
E-mail: alrubaye84@yahoo.com

Definition: 2.2 A subset A of a bitopological space (X, τ_1, τ_2) is called

- (i) ij generalized closed (briefly ij g closed) [6] if τ_i $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is τ_i open in X.
- (ii) ij generalized open (briefly ij g -open) [6] if X A is ij g -closed.
- (iii) $ij \alpha$ generalized closed (briefly $ij \alpha g$ closed) [5] if $\tau_i \alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and U is τ_i open in X.
- (iv) $ij \alpha$ generalized open (briefly $ij \alpha g$ open) [5] if X A is $ij \alpha g$ closed.
- (v) ij generalized α closed (briefly ij $g\alpha$ -closed) [4] if τ_j $\alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and U is τ_i α open in X.
- (vi) ij generalized α open (briefly ij $g\alpha$ open) [4] if X A is ij $g\alpha$ closed.

Definition: 2.3 A bitopological space (X, τ_1, τ_2) is called $ij - T_{1/2}$ space [6] if every ij - g -closed set in it is τ_j -closed.

Definition: 2.4 A map $f:(X,\tau_1,\tau_2) \to (Y,\sigma_1,\sigma_2)$ is called

- (i) $\tau_i \sigma_k$ continuous [1] if the inverse image of every σ_k closed in (Y, σ_1, σ_2) is τ_i closed in (X, τ_1, τ_2) .
- (ii) $ij g \sigma_k$ continuous [1] if the inverse image of every σ_k closed in (Y, σ_1, σ_2) is ij g closed in (X, τ_1, τ_2) .
- (iii) $ij \alpha g \sigma_k$ continuous if the inverse image of every σ_k closed in (Y, σ_1, σ_2) is $ij \alpha g$ closed in (X, τ_1, τ_2) .
- (iv) $ij g\alpha \sigma_k$ continuous if the inverse image of every σ_k closed in (Y, σ_1, σ_2) is $ij g\alpha$ closed in (X, τ_1, τ_2) .

3. GENERALIZED ALPHA GENERALIZED CLOSED SETS IN BITOPOLOGICAL SPACE

In this section we introduce the concept of ij - $g\alpha g$ - closed sets in bitopological spaces and discuss some of the related properties.

Definition: 3.1 A subset A of a bitopological space (X, τ_1, τ_2) is said to be a ij - generalized alpha generalized closed set (briefly ij - $g\alpha g$ - closed) if τ_i - $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is τ_i - αg - open in X.

Proposition: 3.2 Every τ_i - closed set is ij - $g\alpha g$ - closed set.

Proof: Let A be any τ_j - closed set and U be any τ_i - αg - open set containing A. Then τ_j - $cl(A) = A \subseteq U$. Hence A is ij - $g \alpha g$ - closed set.

The converse of the above proposition is not true as seen from the following example.

Example: 3.3 Let $X = \{a, b, c\}$, $\tau_1 = \{X, \phi, \{a\}\}$, and $\tau_2 = \{X, \phi, \{a, b\}\}$. Then $\{b, c\}$ is $12 - g\alpha g$ - closed but not τ_2 -closed.

Proposition: 3.4 Every $ij - g \alpha g$ - closed set is ij - g - closed.

Proof: Let A be any $ij - g\alpha g$ - closed set and U be any τ_i - open set containing A. Since every τ_i - open is $\tau_i - \alpha g$ - open set and A is $ij - g\alpha g$ - closed set, then τ_j - $cl(A) \subseteq U$. Hence A is ij - g - closed set.

The converse of the above proposition is not true as seen from the following example.

Example: 3.5 Let $X = \{a,b,c\}$, $\tau_1 = \{X,\phi,\{a,b\}\}$, and $\tau_2 = \{X,\phi,\{a\},\{b\},\{a,b\}\}$. Then $\{a,b\}$ is 12 - g - closed but not $12 - g\alpha g$ - closed.

Proposition: 3.6 Every $ij - g \alpha g$ - closed set is $ij - \alpha g$ - closed.

Qays Hatem Imran* / Generalized Alpha Generalized Closed Sets In Bitopological Spaces / IRJPA- 4(3), March-2014.

Proof: Let A be any ij - $g\alpha g$ - closed set and U be any τ_i - open set containing A. Since every τ_i - open is τ_i - αg - open set and A is ij - $g\alpha g$ - closed set, then τ_i - $\alpha cl(A) \subseteq \tau_i$ - $cl(A) \subseteq U$. Hence A is ij - αg - closed set.

The converse of the above proposition is not true as seen from the following example.

Example: 3.7 Let $X = \{a, b, c\}$, $\tau_1 = \{X, \phi, \{a\}\}$ and $\tau_2 = \{X, \phi, \{a\}, \{b, c\}\}$. Then $\{a, b\}$ is $12 - \alpha g$ - closed but not $12 - g \alpha g$ - closed.

Proposition: 3.8 Every $ij - g\alpha g$ - closed set is $ij - g\alpha$ - closed.

Proof: Let A be any $ij - g\alpha g$ - closed set and U be any $\tau_i - \alpha$ - open set containing A.

Then $\tau_i - \alpha cl(A) \subseteq \tau_i - cl(A) \subseteq U$. Hence A is $ij - g\alpha$ -closed set.

The converse of the above proposition is not true as seen from the following example.

Example: 3.9 Let $X = \{a, b, c, d\}$, $\tau_1 = \{X, \phi, \{a, b, c\}\}$, and $\tau_2 = \{X, \phi, \{a, d\}, \{a, b, d\}\}$.

Then $\{b\}$ is $12 - g\alpha$ - closed but not $12 - g\alpha g$ - closed.

Definition: 3.10 A subset A of a bitopological space (X, τ_1, τ_2) is said to be a ij - generalized alpha generalized open set (briefly ij - $g\alpha g$ - open) if X - A is ij - $g\alpha g$ - closed in (X, τ_1, τ_2) .

Theorem: 3.11 In a bitopological space (X, τ_1, τ_2)

- (i) Every τ_i open set is ij $g\alpha g$ open set.
- (ii) Every $ij g\alpha g$ open set is ij g open.
- (iii) Every $ij g\alpha g$ open set is $ij \alpha g$ open and $ij g\alpha$ open.

Theorem: 3.12 If A and B are $ij - g\alpha g$ - closed sets in X, then $A \cup B$ is $ij - g\alpha g$ - closed.

Proof: Let U be any τ_i - αg - open set containing A and B. Then $A \subseteq U$ and $B \subseteq U$. Since A and B are ij - $g\alpha g$ - closed sets, τ_j - $cl(A) \subseteq U$ and τ_j - $cl(B) \subseteq U$.

Now, $\tau_i - cl(A \cup B) = \tau_i - cl(A) \cup \tau_i - cl(B) \subseteq U$ and so $\tau_i - cl(A \cup B) \subseteq U$. Hence $A \cup B$ is $ij - g\alpha g$ - closed.

Theorem: 3.13 If a set A is $ij - g\alpha g$ - closed, then $\tau_i - cl(A) - A$ contains no non empty τ_i - closed set.

Proof: Let A be any $ij - g \alpha g$ -closed and F be a τ_i -closed set such that $F \subseteq \tau_j$ - cl(A) - A. Since A is $ij - g \alpha g$ -closed, we have τ_j - $cl(A) \subseteq F^c$. Then $F \subseteq \tau_j$ - $cl(A) \cap (\tau_j - cl(A))^c = \emptyset$. Hence F is empty.

The converse of the above theorem is not true as seen from the following example.

Example: 3.14 Let $X = \{a,b,c\}$, $\tau_1 = \{X,\phi,\{c\}\}$, and $\tau_2 = \{X,\phi,\{a\},\{a,b\}\}$. If $A = \{a\}$, then $\tau_2 - cl(A) - A = \{b,c\}$ does not contain non empty τ_1 - closed set. But $A = \{a\}$ is not $12 - g\alpha g$ - closed.

Theorem: 3.15 A set A is $ij - g\alpha g$ - closed if and only if $\tau_i - cl(A) - A$ contains no non empty $ij - \alpha g$ - closed set.

Proof: Let A be any $ij - g \alpha g$ - closed and D be a $ij - \alpha g$ - closed set such that $D \subseteq \tau_i - cl(A) - A$.

Since A is $ij - g\alpha g$ - closed, we have $\tau_j - cl(A) \subseteq D^c$. Then $D \subseteq \tau_j - cl(A) \cap (\tau_j - cl(A))^c = \phi$.

Thus D is empty.

Conversely, suppose that τ_i - cl(A) - A contains no non empty ij - αg - closed set.

Let $A \subseteq G$ and G is $ij - \alpha g$ - open. If $\tau_i - cl(A) \subseteq G$ then $\tau_i - cl(A) \cap G^c$ is non empty.

Since τ_j - cl(A) is closed and G^c is ij - αg - closed, we have τ_j - $cl(A) \cap G^c$ is non empty ij - αg - closed set of τ_j - cl(A) - A which is a contradiction. Therefore τ_j - $cl(A) \not\subseteq G$. Hence A is ij - $g\alpha g$ - closed.

Theorem: 3.16 If a set A is $ij - g \alpha g$ - closed, then $\tau_i - cl(\{x\}) \cap A \neq \emptyset$ holds for each $x \in \tau_i - cl(A)$.

Proof: If $\tau_i - cl(\{x\}) \cap A = \emptyset$ for some $x \in \tau_i - cl(A)$, then $A \subseteq (\tau_i - cl(\{x\}))^c$.

Since A is ij - $g\alpha g$ - closed, we have τ_j - $cl(A) \subseteq (\tau_i - cl(\{x\}))^c$. This shows that $x \notin \tau_j$ - cl(A). This contradicts the assumption.

The converse of the above theorem is not true as seen from the following example.

Example: 3.17 Let $X = \{a, b, c\}$, $\tau_1 = \{X, \phi, \{a\}\}$, and $\tau_2 = \{X, \phi, \{a\}, \{b, c\}\}$. For a subset $A = \{a, b\}$ is not a 12 - $g \alpha g$ - closed set, but $\tau_1 - cl(\{x\}) \cap A \neq \phi$, for each $x \in \tau_2 - cl(A)$.

Theorem: 3.18 If A is a ij - $g\alpha g$ - closed set of (X, τ_1, τ_2) such that $A \subseteq B \subseteq \tau_j$ - cl(A), then B is also an ij - $g\alpha g$ - closed of (X, τ_1, τ_2) .

Proof: Let U be any τ_i - αg - open set such that $B \subseteq U$. As A is ij - $g\alpha g$ - closed and $A \subseteq U$, we have τ_j - $cl(A) \subseteq U$. Now $B \subseteq \tau_j$ - cl(A) which gives, τ_j - $cl(B) \subseteq \tau_j$ - $cl(\tau_j$ - $cl(A)) = \tau_j$ - $cl(A) \subseteq U$. Thus τ_j - $cl(B) \subseteq U$. Hence B is ij - $g\alpha g$ - closed.

Theorem: 3.19 Let $A \subseteq Y \subseteq X$ and suppose that A is $ij - g\alpha g$ - closed in X. Then A is $ij - g\alpha g$ - closed relative to Y.

Theorem: 3.20 If A is $\tau_i - \alpha g$ - open and $ij - g \alpha g$ - closed in X, then A is τ_j - closed in X.

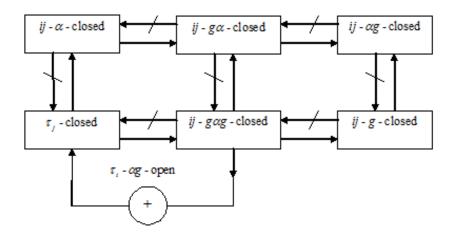
Proof: Since A is τ_i - αg - open and ij - $g\alpha g$ - closed in X, then τ_j - $cl(A) \subseteq A$ and hence A is τ_j - closed in X.

Theorem: 3.21 For each point x of (X, τ_1, τ_2) , either a singleton $\{x\}$ is $\tau_i - \alpha g$ - closed or $\{x\}^c$ is $ij - g\alpha g$ - closed in X.

Proof: If set $\{x\}$ is not τ_i - αg - closed in X, then $\{x\}^c$ is not τ_i - αg - open in X and the only τ_i - αg - open set containing $\{x\}^c$ is the space X itself. Then τ_i - $cl(\{x\}^c) \subseteq X$ and so $\{x\}^c$ is ij - $g\alpha g$ - closed in X.

Theorem: 3.22 If a subset A of (X, τ_1, τ_2) is $ij - g\alpha g$ - closed in X, then $\tau_i - cl(A) - A$ is $ij - g\alpha g$ - open set.

Remark: 3.23 The following diagram shows the relations among the different types of weakly closed sets that were studied in this section:



4. GENERALIZED ALPHA GENERALIZED CONTINUOUS MAPPING

In this section we introduce the concept of ij - $g\alpha g$ - continuous mapping bitopological spaces and discuss some of the related properties.

Definition: 4.1 A mapping $f:(X,\tau_1,\tau_2) \to (Y,\sigma_1,\sigma_2)$ is said to be $ij - g\alpha g - \sigma_k$ - continuous if the inverse image of every σ_k - closed in Y is $ij - g\alpha g$ - closed in X.

Theorem: 4.2 If a mapping $f:(X,\tau_1,\tau_2) \to (Y,\sigma_1,\sigma_2)$ is ij - $g\alpha g$ - σ_k - continuous, then f is ij - αg - σ_k - continuous.

Proof: Let V be any σ_k - closed in Y. Since f is $ij - g\alpha g - \sigma_k$ - continuous, $f^{-1}(V)$ is $ij - g\alpha g$ - closed in X. Then by proposition (3.6), $f^{-1}(V)$ is $ij - \alpha g$ - closed in X. Hence f is $ij - \alpha g - \sigma_k$ - continuous.

Theorem: 4.3 If a mapping $f:(X,\tau_1,\tau_2)\to (Y,\sigma_1,\sigma_2)$ is $ij-g\alpha g-\sigma_k$ -continuous, then f is $ij-g\alpha-\sigma_k$ - continuous.

Theorem: 4.4 If a mapping $f:(X,\tau_1,\tau_2) \to (Y,\sigma_1,\sigma_2)$ is $ij - g\alpha g - \sigma_k$ - continuous if and only if inverse image of each σ_k - open set of Y is $ij - g\alpha g$ - open in X.

Proof: Let f be $ij - g\alpha g - \sigma_k$ -continuous. If V is any σ_k -open set of Y then V^c is σ_k -closed in Y. Since f is $ij - g\alpha g - \sigma_k$ -continuous, $f^{-1}(V^c) = (f^{-1}(V))^c$ is $ij - g\alpha g$ -closed in X. Hence $f^{-1}(V)$ is $ij - g\alpha g$ -open in X.

Conversely, let V be any σ_k -closed in Y. By hypothesis $f^{-1}(V^c)$ is $ij - g\alpha g$ - open in X. Then $f^{-1}(V)$ is $ij - g\alpha g$ - closed in X. Hence f is $ij - g\alpha g - \sigma_k$ - continuous.

Theorem: 4.5 If $f_1:(X,\tau_1,\tau_2)\to (Y,\sigma_1,\sigma_2)$ is $ij-g\alpha g-\sigma_k$ -continuous, $f_2:(Y,\sigma_1,\sigma_2)\to (Z,\rho_1,\rho_2)$ is $ij-g-\sigma_k$ -continuous and Y is $ij-T_{1/2}$ -space. Then $f_2\circ f_1:(X,\tau_1,\tau_2)\to (Z,\rho_1,\rho_2)$ is $ij-g\alpha g-\sigma_k$ -continuous.

Proof: Let V be any ρ_k -closed in Z. Since f_2 is $ij - g - \sigma_k$ -continuous and Y is $ij - T_{1/2}$ -space, $f_2^{-1}(V)$ is σ_j -closed in Y. Since f_1 is $ij - g\alpha g - \sigma_k$ -continuous, $f_1^{-1}(f_2^{-1}(V))$ is $ij - g\alpha g$ - closed in X. Hence $f_2 \circ f_1$ is $ij - g\alpha g - \sigma_k$ -continuous.

Definition: 4.6 A bitopological space (X, τ_1, τ_2) is called a ij- T_{gag} -space if every ij- $g\alpha g$ -closed set in it is τ_i -closed.

Proposition: 4.7 Every ij - $T_{1/2}$ - space is a ij - $T_{g\alpha g}$ - space.

Proof: Let (X, τ_1, τ_2) be a ij - $T_{1/2}$ - space and let A be a ij - $g \alpha g$ - closed set in X. By proposition (3.4), A is a ij - g - closed in X. Since X is a ij - $T_{1/2}$ - space, A is τ_j - closed in X. Hence (X, τ_1, τ_2) is a ij - $T_{g\alpha g}$ - space.

Theorem: 4.8 Let $f:(X,\tau_1,\tau_2) \to (Y,\sigma_1,\sigma_2)$ be a map:

- (i) If (X, τ_1, τ_2) is an $ij T_{1/2}$ space then f is $ij g \sigma_k$ continuous if and only if it is $ij g \alpha g \sigma_k$ continuous.
- (ii) If (X, τ_1, τ_2) is an ij $T_{g\alpha g}$ space then f is τ_j σ_k continuous if and only if it is ij $g\alpha g$ σ_k continuous.

Proof:

(i) Let V be any σ_k -closed in Y. Since f is ij - g - σ_k -continuous, $f^{-1}(V)$ is ij - g -closed in X. By (X, τ_1, τ_2) is an ij - $T_{1/2}$ - space, which implies, $f^{-1}(V)$ is τ_j -closed. By proposition (3.2), $f^{-1}(V)$ is ij - $g\alpha g$ - closed in X. Hence f is ij - $g\alpha g$ - σ_k - continuous.

Conversely, suppose that f is $ij - g\alpha g - \sigma_k$ - continuous. Let V be any σ_k - closed in Y.

Then $f^{-1}(V)$ is $ij - g \alpha g$ - closed in X. By proposition (3.4), $f^{-1}(V)$ is ij - g - closed in X. Hence f is $ij - g - \sigma_k$ - continuous.

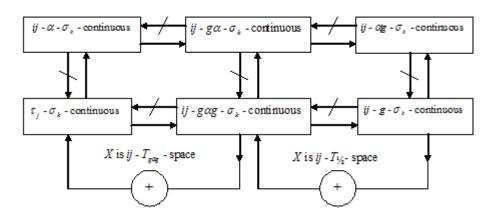
(ii) Let V be any σ_k -closed in Y. Since f is τ_i - σ_k - continuous, $f^{-1}(V)$ is τ_i -closed in X.

By proposition (3.2), $f^{-1}(V)$ is $ij - g\alpha g$ - closed in X. Hence f is $ij - g\alpha g - \sigma_k$ - continuous.

Conversely, suppose that f is ij - $g\alpha g$ - σ_k - continuous. Let V be any σ_k - closed in Y.

Then $f^{-1}(V)$ is ij - $g\alpha g$ - closed in X. By (X, τ_1, τ_2) is an ij - $T_{g\alpha g}$ - space, which implies, $f^{-1}(V)$ is τ_j - closed in X. Hence f is τ_j - σ_k - continuous.

Remark: 4.9 The following diagram shows the relations among the different types of weakly continuous mappings that were studied in this section:



REFERENCES

- 1. H. Maki, P. Sundaram and K. Balachandran, Semi generalized continuous maps in Bitopological spaces, Bull. Fukuoka. Univ. Ed. Part III, 40, 33 40, (1991).
- 2. J. C. Kelly, Bitopological Spaces, Proc. London Math. Soc., 13, 17 89, (1963).
- 3. M. Jelic, Feebly *p* continuous mappings, Suppl. Rend Circ. Mat. Palermo (2), 24, 387 395, (1990).
- 4. N. Levine, Generalized closed sets in Topology, Rend. Circ. Mat. Palermo, 19, 89 96, (1970).

- 5. O. A. El-Tantawy and H. M. Abu-Donia, Generalized Separation Axioms in Bitopological spaces, The Arabian JI for Science & Engg. Vol.30, No.1A, 117 129, (2005).
- 6. T. Fukutake , On generalized closed sets in bitopological spaces, Bull. Fukuoka. Univ. Ed. Part III, 35, 19–28, (1986).
- 7. V. Seenivasan and S. Kalaiselvi, Generalized semi generalized closed sets in Bitopological spaces, Elixir International Journal, Appl. Math., 46, 8446 8450, (2012).

Source of Support: Nil, Conflict of interest: None Declared