International Research Journal of Pure Algebra -4(3), 2014, 452-456
 CBPP
 Available online through www.rjpa.info ISSN 2248-9037
 NONBONDAGE AND TOTAL NONBONDAGE NUMBERS IN DIGRAPHS

V. R. KULLI*
Department of Mathematics, Gulbarga University, Gulbarga 585 106, India.

(Received on: 03-03-14; Revised \& Accepted on: 12-03-14)

Abstract

Let $D=(V, A)$ be a digraph. A set S of vertices in a digraph D is called a dominating set of D if every vertex v in $V-S$, there exists a vertex u in S such that (u, v) in A. The domination number $\gamma(D)$ of D is the minimum cardinality of a dominating set of D. A set S of vertices in a digraph D is called a total dominating set of D if S is a dominating set of D and the induced subdigraph $\langle S\rangle$ has no isolated vertices. The total domination number $\gamma_{t}(D)$ of D is minimum cardinality of a total dominating set of D. The nonbondage number $b_{n}(D)$ of a digraph D is the maximum cardinality among all sets of arcs $X \subseteq A$ such that $\gamma(D-X)=\gamma(D)$. The total nonbondage number $b_{t n}(D)$ of a digraph D without isolated vertices is the maximum cardinality among all sets of arcs $X \subseteq A$ such that $D-X$ has no isolated vertices and $\gamma_{t}(D-X)=\gamma_{t}(D)$. In this paper, the exact value of $b_{n}(D)$ for any digraph D is found. We obtain several bounds on the bondage and total nonbondage numbers of a graph. Also exact values of these two parameters for some standard graphs are found.

Keywords: digraph, nonbondage number, total nonbondage number.
Mathematics Subject Classification: 05C.

1. INTRODUCTION

In this paper, $D=(V, A)$ is a finite directed graph without loops and multiple arcs (but pairs of opposite arcs are allowed) and $G=(V, E)$ is a finite, undirected graph without loops multiple edges. For basic terminology, we refer to Chartand and Lesnaik [3].

A set S of vertices in a graph G is a dominating set if every vertex in $V-S$ is adjacent to some vertex in S. The domination number $\gamma(G)$ of G is the minimum cardinality of a dominating set of G. A recent survey of $\gamma(G)$ can be found in Kulli [8].

Among the various applications of the theory of domination that have been considered, the one that is perhaps most often discussed concerns a communication network. Such a network consists of existing communication links between a fixed set of sites. The problem is to select smallest set of sites at which to place transmitters so that every site in the network that does not have a transmitter is joined by a direct communication link to one that does have a transmitter. To minimize the direct communication links in the network, in [17] Kulli and Janakiram introduced the concept of the nonbondage number in graphs as follows:

The nonbondage number $b_{n}(G)$ of a graph G is the maximum cardinality among all sets of edges $X \subseteq E$ such that $\gamma(G-X)=\gamma(G)$.

This concept was also studied in $[9,10,11,12,13,14,15,16]$.
Let G be a graph without isolated vertices. A dominating set S of V is called a total dominating set of G if the induced subgraph $\langle S\rangle$ has no isolated vertices. The total domination number $\gamma_{t}(G)$ of G is the minimum cardinality of a total dominating set of G.

In [9], Kulli introduced the concept of total nonbondage in graphs as follows:

> *Corresponding author: V. R. KULLI*
> Department of Mathematics, Gulbarga University, Gulbarga 585 106, India.
> ${ }^{*}$ E-mail: vrkulli@gmail.com

V. R. KULLI* / Nonbondage and Total Nonbondage Numbers in Digraphs / IRJPA- 4(3), March-2014.

The total nonbondage number $\gamma_{t n}(G)$ of a graph G without isolated vertices is the maximum cardinality among all sets of edges $X \subseteq E$ such that $G-X$ has no isolated vertices and $\gamma_{t}(G-X)=\gamma_{t}(G)$.

Let $D=(V, A)$ be a digraph. For any vertex $u \in V$, the sets $O(u)=\{v /(u, v) \in A\}$ and $I(u)=\{v /(v, u) \in A\}$ are called the outset and inset of u. The indegree and outdegree of u are defined by $\operatorname{id}(u)=|I(u)|$ and $\operatorname{od}(u)=|O(u)|$. The maximum outdegree of D is denoted by $\Delta^{+}(D)$. Let $\lceil x\rceil(\lfloor x\rfloor)$ denote the least (greatest) integer greater (less) than or equal to x.

A set S of vertices in a digraph $D=(V, A)$ is a dominating set if for every vertex $u \in V-S$, there exists a vertex $v \in S$ such that $(v, u) \in A$. The domination number $\gamma(D)$ of D is the minimum cardinality of a dominating set of D.

Let $D=(V, A)$ be a digraph in which $\operatorname{id}(v)+o d(v)>0$ for all $v \in V$. A subset S of V is called a total dominating set of D if S is a dominating set of D and the induced subdigraph $\langle S\rangle$ has no isolated vertices. The total domination number $\gamma_{t}(D)$ of D is the minimum cardinality of a total dominating set of D, (see [1]).

In [2, 6], the concept of bondage in digraphs was studied and in [7], the concept of total bondage in digraphs was studied.

In this paper, we introduce the analog of nonbondage and total nonbondage in digraphs. We obtain several results on these parameters.

2. NONBONDAGE NUMBER IN DIGRAPHS

The concept nonbondage number can be extended to digraphs.
Definition: 2.1 The nonbondage number $b_{n}(D)$ of a digraph $D=(V, A)$ is the maximum cardinality among all subsets of $\operatorname{arcs} X \subseteq A$ such that $\gamma(D-X)=\gamma(D)$.

Since the domination number of every spanning subgraph of a digraph D is at least $\gamma(D)$, the nonbondage number of a nonempty digraph is well defined.

A γ-set is a minimum dominating set and a b_{n}-set is a maximum nonbondage set of D.
Remark: 2.2 In the definition 2.1, if $X=\phi$, then $b_{n}(D)=0$.
Proposition: 2.3 Let $K_{1, p}$ be a directed star in which $\operatorname{od}(u)=p$ and $\operatorname{id}\left(u_{i}\right)=1,1 \leq i \leq p$. Then

$$
b_{n}\left(K_{1, p}\right)=0
$$

Proof: Clearly $\gamma\left(K_{1, p}\right)=1$. Also $\gamma\left(K_{1, p}-u u_{i}\right)=2$ for $1 \leq i \leq p$. Thus $b_{n}\left(K_{1, p}\right)=0$.
Proposition: 2.4 Let $K_{1, p}$ be a directed star in which $\operatorname{od}\left(u_{i}\right)=1,1 \leq i \leq p$ and $\operatorname{id}(u)=p$. Then

$$
b_{n}\left(K_{1, p}\right)=p-1
$$

Proof: Clearly $\gamma\left(K_{1, p}\right)=p$. Let $u u_{i}=e_{i}$ be arcs of $K_{1, p}$. Then

$$
\gamma\left(K_{1, p}-\left\{e_{1}, \ldots, e_{p-1}\right\}\right)=p
$$

and

$$
\gamma\left(K_{1, p}-\left\{e_{1}, \ldots, e_{p}\right\}\right)=p+1
$$

Thus

$$
b_{n}\left(K_{1, p}\right)=p-1
$$

Proposition: 2.5 For a directed path P_{p} with $p \geq 3$ vertices,

$$
\begin{aligned}
b_{n}\left(P_{p}\right) & =\frac{p}{2}-1, & & \text { if } p \text { is even, } \\
& =\left\lfloor\frac{p}{2}\right\rfloor, & & \text { if } p \text { is odd. }
\end{aligned}
$$

Proof: Let $P_{p}=\left(v_{1}, v_{2}, \ldots, v_{p}\right)$ be a directed path with $p \geq 3$ vertices. Let $v_{i} v_{i+1}=e_{i}$ be directed arcs, $1 \leq i \leq p-1$.
We consider the following two cases.

Case: 1 Suppose p is even. Then the removal of set of arcs $X_{1}=\left\{e_{2}, e_{4}, \ldots, e_{p-2}\right\}$ from P_{p} results in a digraph D_{1} containing only $\frac{p}{2}$ isolated arcs. Thus

$$
\gamma\left(P_{p}-X_{1}\right)=\gamma\left(D_{1}\right)=\gamma\left(P_{p}\right)=\frac{p}{2}
$$

Also $\left|X_{1}\right|=\frac{p-2}{2}$. Furthermore, the removal of any arc e from D_{1} results a digraph such that $\gamma\left(D_{1}-e\right)=\frac{p}{2}$. Thus $b_{n}\left(P_{p}\right)=\left|X_{1}\right|=\frac{p}{2}-1$.

Case: 2 Suppose p is odd. Then the removal of set of arcs $X_{2}=\left\{e_{2}, e_{4}, \ldots, e_{p-1}\right\}$ from P_{p} results in a digraph D_{2} containing only $\frac{p-1}{2}$ isolated arcs and an isolated vertex. Thus

$$
\gamma\left(P_{p}-X_{2}\right)=\gamma\left(D_{2}\right)=\gamma\left(P_{p}\right)=\frac{p-1}{2}+1=\left\lceil\frac{p}{2}\right\rceil
$$

Also, $\left|X_{2}\right|=\frac{p-1}{2}$. Furthermore, the removal of any arc e from D_{2} results a digraph such that $\gamma\left(D_{2}-e\right)>\left\lceil\frac{p}{2}\right\rceil$. Thus $b_{n}\left(P_{p}\right)=\left|X_{2}\right|=\frac{p-1}{2}=\left\lfloor\frac{p}{2}\right\rfloor$.

Proposition: 2.6 For any directed cycle C_{p} with $p \geq 3$ vertices,

$$
\begin{aligned}
b_{n}\left(C_{p}\right) & =\frac{p}{2}, \quad \text { if } p \text { is even, } \\
& =\left\lfloor\frac{p}{2}\right\rfloor+1, \text { if } p \text { is odd. }
\end{aligned}
$$

Proof: Let C_{p} be a directed cycle with $p \geq 3$ vertices. Since $C_{p}-e=P_{p}$ for any arc e of C_{p}, we have

$$
\begin{aligned}
\gamma\left(C_{p}\right)=\gamma\left(C_{p}-e\right) & =\frac{p}{2}, & & \text { if } p \text { is even, } \\
& =\left\lfloor\frac{p}{2}\right\rfloor+1, & & \text { if } p \text { is odd. }
\end{aligned}
$$

Thus $b_{n}\left(C_{p}\right)>1$ and $b_{n}\left(C_{p}\right)=1+b_{n}\left(P_{p}\right)$. Thus by proposition 2.5 ,

$$
\begin{aligned}
b_{n}\left(C_{p}\right) & =\frac{p}{2}, \quad \text { if } p \text { is even, } \\
& =\left\lfloor\frac{p}{2}\right\rfloor+1, \quad \text { if } p \text { is odd. }
\end{aligned}
$$

Theorem: 2.7 For any digraph D with p vertices and q arcs,

$$
\begin{equation*}
b_{n}(D)=q-p+\gamma(D) \tag{1}
\end{equation*}
$$

Proof: Let S be a γ-set of D. For each vertex v in $V-D$, choose exactly one arc (u, v) which is incident to v and to a vertex u in S. Let X be the set of all such arcs. Then clearly $A-X$ is a b_{n}-set of D. Thus (1) holds.

Theorem: A[1] For any digraph D with p vertices,

$$
\begin{equation*}
\gamma(D) \leq p-\Delta^{+}(D) \tag{2}
\end{equation*}
$$

We obtain an upper bound for $b_{n}(D)$.

V. R. KULLI* / Nonbondage and Total Nonbondage Numbers in Digraphs / IRJPA- 4(3), March-2014.

Theorem: 2.8 For any digraph D with p vertices and q arcs,

$$
\begin{equation*}
b_{n}(D) \leq p-\Delta^{+}(D) \tag{3}
\end{equation*}
$$

Proof: This follows from (1) and (2).
Theorem: 2.9 For any subdigraph H of a digraph D,

$$
\begin{equation*}
b_{n}(H) \leq b_{n}(D) \tag{4}
\end{equation*}
$$

Proof: Since every nonbondage set of H is a nonbondage set of D, (4) holds.
Corollary: 2.10 For any digraph D with p vertices, which has a hamiltonian circuit,

$$
\begin{equation*}
b_{n}(D) \geq\left\lceil\frac{p}{2}\right\rceil \tag{5}
\end{equation*}
$$

Proof: This follows from (4) and the fact C_{p} is a spanning subdigraph of D and $\gamma\left(C_{p}\right)=\left\lceil\frac{p}{2}\right\rceil$.
The following result gives a new upper bound for $b(D)$.
Theorem: 2.11 For any digraph D,

$$
\begin{equation*}
b(D) \leq b_{n}(D)+1 \tag{6}
\end{equation*}
$$

and this bound is sharp.
Proof: Let X be a b_{n}-set of a digraph D. Then, for any arc e in $D-X, X \cup\{e\}$ is a bondage set of D. Thus

$$
b(D) \leq|X \cup\{e\}| .
$$

This prove (6).
The equality in (6) holds if $K_{1, p}$ is a directed star in which $\operatorname{od}\left(u_{i}\right)=1,1 \leq i \leq p$, and $\operatorname{id}(u)=p$.
The following result is another upper bound for $b(D)$.
Corollary: 2.12 For any digraph D,

$$
\begin{equation*}
b(D) \leq q-\Delta^{+}(D)+1 \tag{7}
\end{equation*}
$$

Proof: This follows from (6) and (3).

3. TOTAL NONBONDAGE NUMBER IN DIGRAPHS

The concept of total nonbondage number can be extended to digraphs.
Definition: 3.1 The total nonbondage number $b_{t n}(D)$ of a digraph D without isolated vertices is the maximum cardinality among all subsets of arcs $X \subseteq A$ such $D-X$ has no isolated vertices and $\gamma_{\mathrm{t}}(D-X)=\gamma_{t}(D)$.

A $b_{t n}$-set is a maximum total nonbondage set of D.
Remark: 3.2 In the definition 3.1, if $X=\phi$, then $b_{t n}(D)=0$.
Proposition: 3.3 If $K_{1, p}$ is a directed star, then $b_{t n}\left(K_{1, p}\right)=0$.
Proof: Let $K_{1, p}$ be a directed star. Then for every arc a in $K_{1, p}, K_{1, p}-a$ has an isolated vertex. Thus $b_{t n}\left(K_{1, p}\right)=0$.
Proposition: 3.4 For a directed path P_{p} with $p \geq 2$ vertices,

$$
\begin{aligned}
b_{t n}\left(P_{p}\right) & =0, & & \text { if } p=2,3,4, \\
& =\left\lceil\frac{p}{2}\right\rceil-2, & & \text { if } p \geq 5 .
\end{aligned}
$$

Proposition: 3.5 For a directed cycle C_{p} with $p \geq 3$ vertices,

$$
b_{t n}\left(C_{p}\right)=\left\lfloor\frac{p}{3}\right\rfloor
$$

REFERENCES

[1] S. Arumugam, K. Jacob and L. Volkmann, Total and connected domination in digraphs, Australasian J. Combin., 39, 283-292 (2007).
[2] K. Carlson and M. Develin, On the bondage number of planar and directed graphs, Discrete Mathematics, Vol. 306, No. 8-9, 820-826 (2006).
[3] G. Chartrand and L. Lesniak, Graphs and Digraphs, CRC (2004).
[4] J. F. Fink, M.S. Jacobson, I.F. Kinch and J. Roberts, The bondage number of a graph, Discrete Math. 86, 4757, (1990).
[5] J. Ghoshal, R. Laskar and D. Pillone, Topics on domination in directed graphs. In Domination in Graphs, T.W. Haynes, et al. eds., Marcel Dekker, Inc., New York, 401-437 (1998).
[6] J. Huang and J.-M. Xu, The bondage numbers of extended de Bruijn and Kautz digraphs, Computers and Mathematics with Applications, Vol. 51, No. 6-7, 1137-1147 (2006).
[7] J. Huang and J -M. Xu, The total domination and total bondage numbers of extended de Bruijn and Kautz digraphs, Computers and Mathematics with Applications 53, 1206-1213, (2007).
[8] V.R.Kulli, Theory of Domination in Graphs, Vishwa International Publications, Gulbarga, India (2010).
[9] V.R.Kulli, The total nonbondage number of a graph. In Advances in Domination Theory II, V.R.Kulli, ed., Vishwa International Publications, Gulbarga, India, 1-8, (2010).
[10] V.R.Kulli, The efficient nonbondage number of a graph. In Advances in Domination Theory II, V.R.Kulli, ed., Vishwa International Publications, Gulbarga, India, 55-61, (2013).
[11] V.R.Kulli, On nonbondage numbers of a graph, International J. of Advanced Research in Computer Science and Technology, Vol. 1, No. 1, 42-45, (2013).
[12] V.R.Kulli, Restrained nonbondage and total restrained nonbondage numbers in graphs. In Advances in Domination Theory II, V.R.Kulli, ed., Vishwa International Publications, Gulbarga, India, 130, (2013).
[13] V.R.Kulli, Edge bondage and edge nonbondage in graphs. In Advances in Domination Theory II, V.R.Kulli, ed., Vishwa International Publications, Gulbarga, India, 137, (2013).
[14] V.R.Kulli, Total edge bondage and total edge nonbondage in graphs. In Advances in Domination Theory II, V.R.Kulli, ed., Vishwa International Publications, Gulbarga, India, 138, (2013).
[15] V.R.Kulli, The double nonbondage number of a graph. In Advances in Domination Theory II, V.R.Kulli, ed., Vishwa International Publications, Gulbarga, India, 160, (2013).
[16] V.R.Kulli, Advances in Domination Theory II, Vishwa International Publications, Gulbarga, India, (2013).
[17] V.R.Kulli and B. Janakiram, The nonbondage number of a graph, Graph Theory Notes of New York, New York Academy of Sciences, XXX, 14-16, (1996).

Source of Support: Nil, Conflict of interest: None Declared

