International Research Journal of Pure Algebra -4(4), 2014, 495-500 Available online through www.rjpa.info

SOME SPECIAL NEAR – RINGS

G. Sugantha^{*1} and R. Balakrishnan²

¹Department of Mathematics, Pope's college, Sawyerpuram- 628251, India.

²P. G & Research Department of Mathematics, V. O. Chidambaram College, Thoothukudi-628 008, India.

(Received on: 10-04-14; Revised & Accepted on: 23-04-14)

ABSTRACT

In [4] ([5]) we defined a right near – ring N to be $\beta_1(\beta_2)$ if xNy = Nxy(xNy = xyN) for all x, y in N. Following these we make an attempt in this paper to study the properties of those near – rings which satisfy the conditions xNy = yxN and xNy = Nyx.

Mathematics Subject Classification: 16Y30.

Keywords: β_3 and β_4 near – rings.

1. INTRODUCTION

A right near – ring is an algebraic system (N,+,·) with two binary operations '+'and '.' such that
(i) (N, +) is a group with 0 as its identity.
(ii) (N, ·) is a semigroup and
(iii) (x + y) z = xz + yz for all x, y, z in N.

Throughout this paper, N stands for a right near – ring $(N, +, \cdot)$ with at least two elements. Obviously, 0n = 0 for all n in N. As in [2], a subgroup (M, +) of (N, +) is called (i) a left N – subgroup of N if MN \subset M, (ii) an N – subgroup of N if NM \subset M and (iii) an invariant N – subgroup of N if M satisfies both (i) and (ii). Again in [2], N is defined to be weak commutative if xyz= xzy for all x, y, z in N. The concept of mate function in N has been introduced in [6] with a view to handling the regularity structure with considerable ease. A map 'f' from N into N is called (i) a mate function for N if x = xf(x) x. (ii) a P₃ mate function if in addition, xf(x) = f(x)x for all x in N. By identity 1 of N, we mean only the multiplicative identity of N.

Basic concepts and terms used but left undefined in this paper can be found in [2].

2. NOTATIONS

- (i) E denotes the set of all idempotents of N. (e in N is called an idempotent if $e^2 = e$)
- (ii) L denotes the set of all nilpotents of N. (a in N is nilpotent if $a^k = 0$ for some positive integer k)
- (iii) $N_d = \{n \in N / n(x+y) = nx + ny \text{ for all } x, y \text{ in } N\}$ set of all distributive elements of N.
- (iv) $C(N) = \{n \in N / nx = xn \text{ for all } x \text{ in } N\}$ centre of N.
- (v) $N_0 = \{n \in N/n0 = 0\}$ zero -symmetric part of N.

3. PRELIMINARY RESULTS

We freely make use of the following results and designate them as R(1), R(2),...etc

R(1)N has no non – zero nilpotent elements if and only if $x^2 = 0 \Rightarrow x = 0$ for all x in N. (Problem 14, p.9 of [3]).

*Corresponding author: G. Sugantha^{*1} ¹Department of Mathematics, Pope's college, Sawyerpuram– 628251 E-mail: sugi.trini@gmail.com **R**(2) If *f* is a mate function for N, then for every x in N, xf(x), $f(x)x \in E$ and Nx = Nf(x)x, xN = xf(x)N. (Lemma 3.2 of [6])

R(3) If L={0} and N=N₀ then (i) $xy = 0 \Rightarrow yx = 0$ for all x, y in N (ii) N has Insertion of Factors Property – IFP for short (i. e) for x, y in N, $xy=0 \Rightarrow xny=0$ for all n in N. If Nsatisfies (i) and (ii) then N is said to have (*, IFP) (Lemma 2.3 of [6])

R(4) Any weak commutative near – ring with a left identity is pseudo commutative (i.e) xyz = zyx for all x, y, z in N. (Proposition 2.8 of [7])

R(5) N has strong IFP if and only if for all ideals I of N, and for all x, y, $n \in N$, $xy \in I \Rightarrow xny \in I$ (Proposition 9.2,p. 289 of [2]).

4. β_3 AND β_4 NEAR – RINGS

In this section we define β_3 and β_4 near – rings and give certain examples of these new concepts.

Definition: 4.1 Let N be a right near- ring. If for all x, y in N, xNy =yxN (xNy = Nyx) then we say N is a β_3 near - ring (β_4 near - ring).

Examples: 4.2

(a) Let (N, +) be the Klein's four group with multiplication defined as per scheme 7, p.408 of Pilz [2]

•	0	а	b	c
0	0	0	0	0
a	0	а	0	а
b	0	0	b	b
с	0	а	b	c

This near – ring N is β_3 as well as β_4 . Here, the identity function serves as a mate function.

(b) Then near – ring $(N, +, \cdot)$ where (N, +) is defined on Klein's four group with N={0,a,b,c} and '.' defined as per scheme 14, p.408 of Pilz [2]

•	0	а	b	с
0	0	0	0	0
a	0	а	0	c
b	0	0	0	0
c	0	а	0	с

is neither β_3 (since aNc \neq caN) nor β_4 (since aNc \neq Nca). It is worth noting that this near – ring does not admit mate functions.

(c) Let N be an arbitrary near –ring. Let I be the ideal generated by $\{anb - ban' / a, b, n, n'are in N\}$. The factor near – ring $\overline{N} = N/I$ is a β_3 near – ring.

(d) Let N be an arbitrary near – ring. Let I be the ideal generated by $\{an b - n'ba/a, b, n, n' are in N\}$. The factor near – ring $\overline{N}=N/I$ is a β_4 near – ring

5. β_3 near – Ring

In this section we study some of the important properties of a β_3 near – rings and give a complete characterization of such near – rings.

Proposition: 5.1 If N is a β_3 near – ring, then xNx = x² N for all x in N.

Proof: When N is $a\beta_3$ near – ring, by definition, for all x, y in N, xNy = yxN

The result follows by replacing y by x in (1)

Remark: 5.2 The converse of Proposition 5.1 is not true. For example, we consider the near- ring $(N, +, \cdot)$ where (N, +) is the Klein's four group $\{0, a, b, c\}$ and '.' is defined as per scheme 3,p.408 of Pilz [2]

© 2014, RJPA. All Rights Reserved

(1)

	0	а	b	c
0	0	0	0	0
a	0	0	а	а
b	0	0	b	b
c	0	0	c	c

satisfies the condition $xNx = x^2N$ for all x in N. But it is not a β_3 near – ring. [Since $aNb \neq baN$].

Proposition: 5.3 Let N be a β_3 near – ring with identity 1. Then we have the following:

- (i) N is zero symmetric.
- (ii) N has strong IFP.
- (iii) Every N –subgroup of N is invariant.
- (iv) Every left N–subgroup of N is an N subgroup if $N = N_d$.

Proof: Let N be a β_3 near – ring. Then for all x, y in N, xNy = yxN (1)

(i) Putting x=1 in (1), we get, 1Ny = y1N for all y in N. When y=0, $N0 = 0N = \{0\}$. It follows that N is zero-symmetric.

and let $xy \in I.Now$, $y1x \in yNx$ [since $1 \in N$] = xyN [by (1)] $\in IN \subseteq I[by (2)]$.

Therefore, yx∈I

(3)

Now, for any n in N, we have $xny \in xNy = yxN$ [by (1)] \in IN \subseteq I [by(2)]. From R(5), it follows that N has strong IFP.

(iii) Let S be any N-subgroup of N. Then
$$S = \sum_{x \in S} Nx$$
 (4)

Now, $NxN = Nx1N = N1Nx [by (1)] = NNx \subset Nx \Rightarrow NxN \subset Nx$ (5)

Therefore, $SN = [\sum_{x \in S} Nx] N [by (4)] \subset \sum_{x \in S} NxN \subset \sum_{x \in S} Nx [by(5)] = S[by(4)].$

Consequently S is an invariant N-subgroup.

(iv) Let S be any left N-subgroup of N where $N = N_d$. Then $S = \sum_{x \in S} xN$ (6)

Now, $NxN = 1NxN = x1NN [by (1)] = xNN \subset xN [since SN \subset S] \Rightarrow NxN \subset xN$ (7)

Hence NS= N[$\sum_{x \in s} xN$][by(6)] $\subset \sum_{x \in s} NxN \subset \sum_{x \in s} xN$ [by(7)] = S[by(6)]. Consequently, every left N – subgroup is an N – subgroup.

Proposition: 5.4 Any homomorphic image of a β_3 near-ring is also a β_3 near-ring.

Proof: Straight forward.

Theorem: 5.5 Every β_3 near – ring N is isomorphic to a subdirect product of subdirectly irreducible β_3 near – rings.

Proof: By Theorem 1.62, p. 26 of Pilz [2], N is isomorphic to a subdirect product of subdirectly irreducible near-rings N_i's and each N_i is a homomorphic image of N under the projection map π_i . The rest of the proof is taken care of by Proposition 5.4.

We furnish below a necessary and sufficient condition for a β_3 near – ring to admit mate functions.

Proposition: 5.6 Let N be the β_3 near - ring. Then N admits mate functions if and only if $x \in x^2N$ for all x in N.

Proof: We first observe from Proposition 5.2 that, since N is β_3 , xNx=x²N for all x in N (1)

For the 'only if part', we assume that *f* is a the mate function for N. Then for all x in N, $x=xf(x) x \in xNx$. It follows that $x \in x^2N$.

For the 'if part 'let $x \in x^2 N$ for all x in N. Appealing to (1) we get x=xnx for some n in N. By setting n=f(x), we see that f is a mate function for N.

In the following results we assume that N has a mate function.

Theorem: 5.7 Let N=N_d be a zero – symmetric β_3 near – ring with a mate function. Then we have,

(i) $L=\{0\}$ (ii) N has (*, IFP) (iii) $E \subset C(N)$ (iv) $xN \cap yN = yNxN = xyN$ for all x, y in N.

Proof: (i) Since f is a mate function for N, Proposition 5.6 demands that $x \in x^2N$ for all x in N. Therefore, $x=x^2n$ for some n in N. Suppose $x^2 = 0$. Clearly then x = 0. Now, R(1) guarantees that L={0}.

(ii) By (i) $L = \{0\}$. Now, R(3) guarantees that N has (*,IFP).

(iii) Let $e \in E$. Since N is β_3 , $e^{Ne} = e^{N} = e^{N}$. Therefore, for any n in N, $e^{N} = e^{N}$ and $e^{N} = e^{N}$.

Now, ene = (eu)e and (en)e = eve. Thus ene = en for all n in N

We also have, e(ne-ene) = 0 [since $N=N_d$] \Rightarrow ene(ne-ene) = 0[by(ii)]. And ne(ne-ene) = n.0 = 0 [Since $N=N_o$].

Consequently, $(ne-ene)^2 = 0$ and (i) guarantees ne-ene = 0. Therefore, ene = ne for all n in N (2)

Combining (1) and (2) we get en = ne for all n in N. Thus $E \subset C(N)$.

(iv) First we show that for any left N-subgroups A and B of N, $A \cap B = BA$. By Proposition 5.3 (iv), A and B are Nsubgroups of N. Now, for $x \in A$ and $y \in B$, $yx \in BN \subset B$. Therefore, $BA \subset B$ (3)

Also, $yx \in NA \subset A$. Hence $BA \subset A$ (4)

Combining (3) and (4), $BA \subset A \cap B$ (5)

On the other hand, if $z \in A \cap B$ then since 'f' is a mate function for N, $z = zf(z)z \in (BN)A \subset BA$.

Consequently, $A \cap B \subset BA$ (6)

Combining (5) and (6) $A \cap B = BA$ for all left N-subgroups A, B of N. We know that, xN and yN are left N- subgroups of N.

Therefore, $xN \cap yN = yNxN$ for all x, y in N.

On the other hand, if $y \in N$, then, Since f is a mate function for N, $yN = (yf(y)y)N \subset yNN \Rightarrow xyN \subset xyNN = yNxN$ [since N is β_3].

i neretore, xyin yinxin	(8)
For the reverse inclusion, $yNxN = xyNN$ [since N is β_3] $\subset xyN$. Therefore, $yNxN \subset xyN$	(9)
From (8) and (9), $vNxN = xyN$	(10)

From (8) and (9), yNxN = xyN

NT ____ NT NT

c

-

for all x, y in N. Combining (7) and (10) we get $xN \cap yN = yNxN = xyN$ for all x, y in N.

We furnish below a characterization theorem for β_3 near –ring.

Theorem: 5.8 Let N=N_d be a zero–symmetric near-ring with a mate function f. Then N is β_3 if and only if xyN = yxN for all x, y in N and $E \subset C(N)$.

Proof: For the 'only if part', first we observe that $E \subset C(N)$

[by Theorem 5.7 (iii)]. Since f is a mate function for N. Now, $xyN = xN \cap y N$ [by Theorem 5.7(iv)] = $yN \cap xN = yxN$ [by Theorem 5.7(iv)].

(1)

(1)

(7)

 $\langle 0 \rangle$

For the 'if part', first we show that' f 'is a P₃ mate function for any $x \in N$ we have $x=xf(x)x=x^2f(x)$ [Since $E \subset C(N)$] $\Rightarrow x(f(x)x - xf(x))=0 \Rightarrow xf(x)(f(x)x - xf(x))=0$ [by Theorem 5.7(ii)] and f(x)x(f(x)x - xf(x))=f(x).0=0 [since $N=N_0$]. Consequently, $(f(x)x - xf(x))^2 = 0$ and hence $xf(x) = f(x)x \dots (7)$ for all x in N [by R(1)].

Hence f is a P₃matefunction.Now, $xNy = xNf(y)y = xNyf(y)[by (7)]=x[yf(y)N][Since E \subset C(N)] = xyN = yxN$ [by hypothesis].

6. β_4 near – ring

Throughout this section N denotes a β_4 near-ring. In this section we study some of the important properties.

Proposition: 6.1 If N is a β_4 near – ring, then $xNx = Nx^2$ for all x in N.

Proof: When N is a β_4 near-ring, by definition for all x, y in N, xNy = Nyx (1)

The result follows by replacing y by x in (1).

Remark: 6.2 The converse of Proposition 6.1 is not true. For example, Consider the near – ring $(N, +, \cdot)$ where (N, +) is the Klein's four group $\{0, a, b, c\}$ and \cdot is defined as per scheme 13, p.408 of Pilz [2]

•	0	а	b	c
0	0	0	0	0
a	0	а	b	c
b	0	0	0	0
с	0	а	b	c

Satisfies the condition xNx=Nx² for all x in N. But it is not a β_4 near – ring [since aNb \neq Nba].

Proposition: 6.3 If N is a β_4 near – ring, then NxNy = NyNx for all x, y in N.

Proof: Since N is a β_4 near – ring, we have xNy = Nyx

for all x, y in N. Now, for any x, y, n in N, (nx) $Ny \subset Nx Ny \Rightarrow Ny(nx) \subset NxNy[by(1)] \Rightarrow NyNx \subset NxNy$ (2)

On the other hand, (ny) $Nx \subset NyNx \Rightarrow Nx(ny) \subset NyNx [by(1)] \Rightarrow NxNy \subset NyNx$ (3)

Combining (2) and (3), NxNy=NyNx for all x, y in N.

Remark: 6.4 The converse of Proposition 6.4 is not valid. For example, the near- ring $(N, +, \cdot)$ where (N, +) is the Klein's four group $\{0, a, b, c\}$ and ' \cdot ' is defined as per scheme 20, p.408 of Pilz [2]

•	0	а	b	с
0	0	0	0	0
a	а	а	а	а
b	0	а	b	с
c	а	0	c	b

satisfies the condition NxNy = NyNx for all x, y in N. But it is not a β_4 near – ring [since 0Na \neq Na0]

Theorem: 6.5 Every weak commutative near – ring with identity is β_4 .

Let x, $y \in N$. For any $n \in N$, $xny = xyn[by(1)] = nyx [byR(4)] \in Nyx$. Thus $xNy \subset Nyx$ (2)

On the other hand, for n_1 in N, $n_1yx = xyn_1$ [by R(4)] = xn_1y [by(1)] $\in xNy$. Consequently, Nyx $\subset xNy$ (3)

Combining (2) and (3) we get, N is a β_4 near – ring.

Proposition: 6.6 In a β_4 near – ring, if N=N_d then xM=Mx for all N - subgroups M of N.

(1)

Proof: Let N be a β_4 near – ring. Then for any x, y in N, xNy = Nyx (1)

Let $M = \sum_{v \in M} Ny$ be an N - subgroup of N.

Then $xM = x\sum_{y \in M} Ny = \sum_{y \in M} x(Ny) = \sum_{y \in M} Nyx [by(1)] = [\sum_{y \in M} Ny]x = Mx [by(2)].$

In view of Theorem 5.7 it is worth mentioning that a β_4 near – ring also possesses certain properties which are satisfied by a β_3 near – ring as in the following result.

Theorem: 6.7 Let N be a zero-symmetric β_4 near – ring with mate function. Then we have,

- (i) $L=\{0\}$
- (ii) N has (*, IFP)
- (iii) $E \subset C(N)$
- (iv) $Nx \cap Ny = NyNx = Nxy$ for all x, y in N.

Proof:

(i) Since f is a mate function for N, we have $x=xf(x) \ x \in xNx$. It follows that $x \in Nx^2$ [by Proposition 6.1]. Therefore, $x=nx^2$ for some n in N. Suppose $x^2 = 0$. Clearly, then x=0. Now, R(1) guarantees that L={0}.

(ii) By (i) L={0}. Now, R(3) guarantees that N has (*,IFP).

(iii) Let $e \in E$. Since N is β_4 , eNe = Nee = Ne. Therefore for any n in N, ene = ue and ne = eve for some u, v in N.

Now, ene = eue and ene = eve. Thus ene = ne for all n in N

We also have, $(en - ene)e = 0 \Rightarrow e(en - ene)=0$ [by(ii)] \Rightarrow ene(en - ene)=0[by(ii)].

Consequently, $(en - ene)^2 = 0$ and (i) guarantees ene=en for all n in N

Combining (1) and (2) we get ne=en for all n in N. Thus $E \subset C(N)$.

(iv) The result follows by replacing the left N-subgroups xN, yN in the proof of Theorem 5.7(iv) by the right N-subgroups Nx, Ny respectively.

We furnish below a characterization theorem for β_4 near – ring.

Theorem: 6.8 Let N be a zero – symmetric near – ring with a mate function f. Then N is β_4 if and only if Nxy = Nyx for all x, y in N and E \subset C(N).

Proof: The proof is similar to that of Theorem 5.8.

REFERENCES

- [1] J. R. Clay, The near rings on groups of low order, Math.Z.104 (1968), 364 371
- [2] Gunter Pilz, near rings, North Holland, Amsterdam, 1983
- [3] N. H. MC. Coy, The Theory of Rings, Macmillan & Co, 1970
- [4] G. Sugantha and R. Balakrishnan, β_1 Near-ring, to appear in International Journal of Algebra, Vol. 8, 2014. No.1, 1-7
- [5] G. Sugantha and R. Balakrishnan, β_2 Near-rings, to appear in International Journal of Ultra Scientist of Physical Sciences, Vol. 26, No (1), 2014 April.
- [6] S. Suryanarayanan and N. Ganesan, Stable and Pseudo Stable Near Rings, Indian J. Pure and Appl.Math19 (12) December, 1988, 1206 – 1216.
- [7] S. Uma, Pseudo Commutative Near Rings, Scientia Magna, An international Journal, Vol.6 (2010) No.2,75 85.

Source of Support: Nil, Conflict of interest: None Declared

(2)

(1)

(2)