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ABSTRACT
Let R be a commutative ring with identity and let x be an element of R. The Element Ideal Graph I, (R) is a graph
whose vertex set is the set of nontrivial ideals of R and two vertices | and J are adjacent if and only if x € I J. In this
paper we consider the element ideal graph of the ring of integers.
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INTRODUCTION

Let R be a commutative ring with identity, and let Z(R) be its set of zero divisors. We associate a simple graph I'(R) to
R with vertices Z*(R) = Z(R)\ {(0)}, the set of all non-zero zero divisors of R, and for distinct x,y €Z*(R), the vertices
x and y are adjacent if and only if xy=0. Obviously I'(R) is empty if R is an integral domain.

The zero divisor graph of a commutative ring was introduced by Beck in [4], and further studied in [1, 2, 3, 9, 10]. The
annihilating ideal graph AG(R) is a graph with vertex set AG*(R) =AG(R)\ {(0)} such that there is an edge between
vertices | and J if and only if 1] = (0). The idea of annihilating ideal graph was introduced by Behboodi and Rakeei in
[5, 6].

In [11], we introduced the notion of the element ideal graph of a commutative ring. In the present paper we consider the
element ideal graph of the ring of integers.

From now on we shall use the symboll— Jto denote for two adjacent ideal vertices | and J, and we use Z to denote the
set of integer numbers.

1. BACKGROUND
In this section we state some definitions and theorems that we need in our work.

Definition: 1.1[11, P.404] Let R be a commutative ring with identity and let XxeR. The element ideal graph is a graph
whose vertex set is nontrivial ideals of R, and two of its vertices | and J are adjacent if and only if x € 1]. We denote
the element ideal graph by I (R).

Definition: 1.2[8]

1. The distance d(u, v) between a pair of vertices u and v of the graph I is the minimum of the lengths of the
u—v paths ofT.
The degree of the vertex a in the graph T is the number of edges incident to a.
The diameter of the graph I is the maximum distance between any two distinct vertices.
The girth of the graph T is the length of the shortest cycle in T
A bipartite graph is one whose vertex set is partitioned into two disjoint subsets in such a way that the two end
vertices for each edge lie in distinct partition. The complete bipartite graph with exactly two partitions of order
m and 1 is called star.
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6. A complete subgraph K, of a graph T is called a clique, and cl(I') is the clique number of T', which is the
greatest integer r> 1 such that K,CT.
7. The graph I is called a plane graph if it can be drawn on a plane in such a way that any two of its edges either
meet only at their end vertices or do not meet at all. A graph which is isomorphic to a plane graph is called a
planar graph.

Theorem: 1.3[8, P.96] (Kuratowsky Theorem) A graph I' is planar if and only if it does not contains a graph
homomorphic with Ks or K (3, 3).

Theorem: 1.4[5, P.8] For every ring R, the annihilating-ideal graph AG(R) is connected and diam(AG(R))<3.
Moreover, if AG(R) contains a cycle, then gr (AG(R)) < 4.

Theorem: 1.5[12] Let n>1 be a non-prime integer. Then, I'(Z,) contains a subgraph which isomorphic with AG(Z,).
2. THE ELEMENT IDEAL GRAPH OF A RING OF INTEGERS

The main purpose of this section is to investigate the element ideal graph of the ring of integers.

We begin this section by the following example.

Example: 1 The graph I3, (Z) is:
) @)

©) @
Lemma: 2.1 A nontrivial ideal | of Z is an ideal vertex of T (Z) if and only if x divisible by the generator of I.

Proof: Let I= (a) be an ideal vertex of I,(Z). Then there exists an ideal vertex (b) of I}, (Z) such that xe(a)(b). This
implies that there exists an integer r such that x=rab. Hence ax.

Conversely, if x is divisible by the generator of 1= (a), then there exists an integer r such that x=ra. Obviously xe(a)(r).
Hence (a) is an ideal vertex of T (Z).

Example: 2 obviously (2) is an ideal vertex of I, (Z) and 2 divides 12.

Proposition: 2.2 Let xeZ*-{1}.Then x is a prime number if and only if T, (Z)=0.

Proof: Let I, (Z)=@. Then by Lemma2.1, the only divisors of x are 1 and +x. This means that x is a prime number.
Conversely, ifx is a prime number, then x has no divisor except 1 and Fx. Then by Lemma2.1, [} (Z)=0.
Example: 3 The graph I, (Z) is an empty graph.

The next result illustrates the adjacency of two ideals in the element ideal graph of the ring of integers.

Theorem: 2.3 Let x, a, bez-{0,#1}. If (a) and (b) are ideal vertices of T, (Z) such that a and b are relatively prime
integers, then (a) and (b) are adjacent ideal vertices in I} (Z).

Proof: Since (a) and (b) are ideal vertices of I,(Z), then by Lemma 2.1, both a and b divide x. Since the common
divisor of aand b is equal to 1, then ab divides x. This means that xe(a)(b). Thus (a) and (b) are adjacent in[ (Z).

Example: 4 The ideals (3) and (4) of Z are adjacent ideal vertices in I}, (Z), since 3 and 4 are relatively prime.
The converse of Theorem2.3 may not be true in general, as the following example shows.

Example: 5 The ideals (6) and (4) of Z are adjacent ideal vertices in I, (Z), while 6 and 4 are not relatively prime.
The next result illustrates that T, (Z) is infinite if and only if x=0.

Proposition: 2.4 Every nontrivial ideal of Z is a vertex of [ (Z) if and only if x=0.

Proof: Suppose that every ideal (a) of Z is an ideal vertex of I,(Z).Then by Lemma2.1, every nonzero integer divides
X. This statement is true for the only when x=0.

© 2014, RIPA. All Rights Reserved 502



N. H. Shuker & F. H. Abdulqadir* / The Element Ideal Graphs Of A Ring Of Integers / IRIPA- 4(4), April-2014.
The next result demonstrates that the divisibility leads to more adjacency in the element ideal graph.

Theorem: 2.5 Let x, a, beZ-{0,F1}with b is a non-prime integer. Then (a) is adjacent to (b) in I, (Z) if and only if (a)
is adjacent to all non-trivial ideals which are generated by divisors of b.

Proof: Let (a) and (b) be two adjacent ideal vertices of I, (Z) and let c# F1 be the divisor of b. This means that
x€(a)(b) and c|b. Then there exists r,s€Z such that x=rab and b=sc. This implies that x=rsac. Thus xe&(a)(c). This
means that (a) and (c) are adjacent ideal vertices in [, (Z).

Conversely, if (a) is adjacent to all nontrivial ideals which are generated by divisors of b, then (a) is adjacent to (b),
since b is a divisor of itself.

Example: 6 The ideals (2) and (6) of Z are adjacent in I3, (Z) and 3 is a divisor of 6. So (2) is also adjacent to (3) in
I,(Z).

From Theorem?2.5 the following corollary is immediate.

Corollary: 2.6 Let x, a, beZ-{0,¥1}. If I, (Z) consists of only one edge (a) — (b) of distinct terminals, then b is either
a prime number or divisible by a.

Proof: Let b is a non-prime number. Then there exists, ceZ-{0,+1, +b}such that c|b. By Theorem2.5, (a) and (c) are

adjacent I, (Z). Since c# Fb and I (Z) consists of the only one edge (a) — (b), then (c) = (a). This implies that
a=+c. Therefore alb.

Example: 7 The graph T,;(Z) consists of the edge (3) — (9) and the loop (3) — (3), and 9 is divisible by 3.
In the next result, we put a certain condition for the element ideal graph to be a star graph.

Theorem: 2.7 Let X be a nonzero integer such that I, (Z) # @. Then T,(Z) is a star graph if and only if T, (Z) consists
of only one edge of distinct terminals.

Proof: Let I,(Z) be a star graph with center (a) , and let (b) and (c) be two ideal vertices incident to (a) in I,(Z). This
means that xe(a)(b)n(a)(c). Then there exist s, re xeZ such that x=rab=sac. This implies that xe(ra)(b)n(sa)(c). Thus
(b) and (c) are adjacent to (ra) and (sa) respectively. But (b) and (c) are the end vertices of I, (Z), so (a)=(ra)=(sa).This
gives that r=F1 and s=F1. Since rab=sac, then F+ab=Fac. The cancellation law givesFb=7Fc. Thus (b)=(c) . Hence
I, (Z) consists of the only one edge of distinct terminals (a) and (b).

The converse is clear, since every graph consisting of one edge is a star graph.
Example: 8 The graph Ty5(Z) is a star graph with the only edge (3)—(5).
The following result shows that the graph I, (Z)may be a star graph of looped center.

Theorem: 2.8 Let neZ*-{1} and let p be a prime number. Then the graphl,n (Z) is star graph of looped center (p) if
and only if either n=2 or n=3.

Proof: If n=2, then I;n (Z)consists of the loop (p)— (p). If n=3, then [},n (Z)consists of the edge (p)— (p%) and the loop
(p)— (p). From both cases we see that the graph I, (Z) is a star graph of looped center (p).

Conversely, suppose that I;n (Z) is a star graph of looped center (p). Since I,;n (Z) # @, then by Proposition2.2, n# 1.
Now we determine those integers at which I,;n (Z) is a star graph of looped center (p). If n=4, then I,n (Z) consists of

the edges (p)— (p?) and (p)— (p°) with the loops (p)— (p) and (p°)— (p?).In this case T,n(Z) is not a star graph,

because it has a loop at the vertex (p°). If n>4, then p"e(p)(P*)N(P?(P*)N(P)(p?). This means that (p)—(p>)—(p*)—(p)
is a cycle in Tpn(Z). In this case I,n (Z) is not a star graph for every n>4. Hence the only cases for I} (Z) to be a star
graph of looped center (p) are n=2 and n=3.

Example: 9 The graph I';(Z) is a star graph of looped center (2).
@ C Or—
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The next result illustrates the planarity of the graph I',n (Z).
Theorem: 2.9 Let neZ*-{1} and let p be a prime number. Then the graphl,n (Z) is planar graph if and only if n<9.

Proof: Suppose that n<9. If n=8, then the graphT},» (Z) can be constructed as follows:

(%

©)(P)— PH)—p°) C

(®)— () -,

Clearly the graph I;s(Z) is a planar graph. Sincel[,2(Z), I[},;3(Z),..., I};7(Z) are subgraphs of I};s(Z), then they are also
planar graphs.

Conversely, suppose that I};n (Z) is a planar graph. We have to show that n<9. If n=9, then the graph T,» (Z)contains a
complete subgraph Ks whose vertices are (p) ,(p%),(p%),(p*) and (p°®). Then by Kuratowsky Theorem in [7], T,» (Z) is not
planar graph. This contradicts the fact that I',n (Z) is a planar graph. Therefore n must be less than 9.

Proposition: 2.10 Let x, a, beZ-{0,#1} such that (a) is an end vertex of [ (Z). Then (a)—(b) is an edge of [ (Z) iff
x=+ab.

Proof: Let (a)— (b) be an edge of T (Z). Then x&(a)(b) . This implies that x=rab for some reZ, then xe&(a)(rb).This
means that (a)—(rb) is an edge of T, (Z). Since (a) is an end vertex ofT, (Z), then (b) = (rb). This gives that r=F1, and
hence x=+ab.

The converse is clear, since x=Fa b implies that x€(a)(b). This means that (a)—(b) is an edge inI} (Z).
Example: 10 In the graph I}, (Z), the ideal vertex (6) is an end vertex adjacent to the ideal vertex (2).
@ O

(6) (4)

I12(Z)

In the next result we find the clique number of T, . ., (Z).

Theorem: 2.11 If neZ*-{1} and py, p, ,... ,p, are distinct prime numbers, then the graph L,
maximal complete subgraph of order n, moreover cl(T},, ,, ., (Z))=n.

1pa.p, (Z) contains a

Proof: Define the graph G by G={(p)—(p;):i,j=1.2,...,n}. Since pip, ..p, € (p;)(pr)for every i, k=1, 2,...,n.
Obviously, G is a complete subgraph of T, ;. . (Z) of order n. To show that the graph G is a maximal complete
subgraph ofT,, ,, ., (Z), let(@) be any ideal vertex of I}, ,, ,, (Z) different from(p,), (p2), ..., (p») and adjacent to all
of them. Then at least one of pq,p,, ..., ps, SAY p: is different from aand divides it. Since (a) is adjacent to (p;), then
P1P2 - Pn € (p1)(a). This implies that there exists an integer r such that p:p,...p, =rp:a. Since ps|a , then p;?|p;a. This
implies that p,?|p;p, ...p,. This contradicts the fact that p; , p ,... ,p, are distinct prime numbers. Therefore G is a
maximal complete subgraph of I, ,, , (Z). Hence cl(T},,p,, _p, (Z))=n.

Example: 11 Consider the graphl;,(Z).
@ ©

(10)
(15)

(5)
(6)

I3, (Z)
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Clearly cl(I30(Z) is equal to the number of primes which are divide 30, that is cl(I3o(Z)=3.
In the next result we find the clique number of I';n (Z).
Theorem: 2.12 Let p be a prime number. Then [} 2n+1(Z))=I}2n+2(Z))=n+1 for every nez'.

Proof: Clearly, the ideal vertices of T,2n+1(Z) and T,2n+2(Z) are (p), (p),....(p™") and (p), (p°), ... , (p°"**) respectively.
Since p¥e(p)(p') , for all ij=1,2,...,n+1, then the graph G={(p")—(p)): i, j=1,2,...,n+1} is a complete subgraph of
[2n+1(Z) and I 20+2(Z).To show that G is a maximal complete subgraph of [,20+1(Z), let (p™) be any ideal vertex of
T,2n+1(Z) such that m>n+1, then p?***¢(p™)(p"™"*), which means that (p™) is not adjacent to (p™). Thus G is a maximal
complete subgraph of [,2n+1(Z) of order k+1, and hence cl([,2n+1(Z))=n+1 for every neZ". It is remain to show that
G is also a maximal complete subgraph of [}2n+2(Z). If (o™ is an ideal vertex of [2n+2(Z) such that m>n+1, then
p*""?g(p™) (p"), that means (p™) is not adjacent to (p™**). Thus G is a maximal complete subgraph of T,2n+2(Z) of
order k+1. Hence cl(I},zn+2(Z))=n+1for every nez’.

Example: 12 Consider the graphs T, (Z) and T, (Z).

(16 4
[35(Z) Tes(Z)

Clearly cl(I35 (Z))=cl(Ts4 (Z))=3.
3. THE RELATIONSHIPT, (Z) AND AG (Z,)

In this section, the relationship between two element ideal graphs of the ring of integers will be explored. Moreover the
relationship between the element ideal graph and the graph of annihilating ideals will be illustrated.

We start this section with the following result.

Proposition: 3.1 Let xyeZ"\{1} such that x is a product of two relatively prime integers. Then x|y if and only if
I\(2) € T, (2).

Proof: Let xly. Then x is a factor of y. So by Proposition2.14 in [10], I (Z) < [, (Z).

Conversely, letly,(Z) < I, (Z), and let x=ab for some relatively prime integers abeZ"\{1}. Then xe(a)(b). This means
that (a)— (b) is an edge in I, (Z). Since I (Z) € I,(Z), then (a)— (b) is also an edge in I}, (Z). By Lemma2.1, both
a and b divide y. Since a and b are relatively prime integers, then x=ably.

Example: 13 The graph I;(Z) is a subgraph of I}, (Z) , since6 divides 12.
The next result gives a sufficient condition for two element ideal graphs to be disjoint.

Proposition: 3.2 If x and y are relatively prime integers, then I, (Z) and T, (Z) are disjoint.

Proof: Let I, (Z) N I}, (Z) # @. Then I (Z) and I} (Z) contain an edge say (a)—(b) .From Lemma2.1, both a and b
divide x and y. Since gcd(x, y) =1, then 1=abe(a). This contradicts the fact that (a) is a nontrivial ideal. Therefore
I (Z) and T, (Z) are disjoint.

Example: 14 The graphs I'y(Z) and I';¢(Z) are disjoint, since 9 and 16 are relatively prime integers.

(8) O
® @ @ OLQ

[y(2)T16(2)
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Clearly Ty(Z) nTy(Z) = Q.
The next example shows that the converse of Proposition3.2 may not be true in general.
Example: 15 The graphs I',(Z) and T'¢(Z) are disjoint, while 4 and 6 are not relatively prime integers.

The next result gives a sufficient condition for two element ideal graphs to be identical.
Theorem: 3.3 Let x, yeZ-{0, 11} be non-primes. Then T, (2)=T,,(2) ifand only if x=y.

Proof: Let I, (Z)=T (Z). Then x, y€(a)(b) for every edge (a)—(b) of I',(Z) and I, (Z). Then there exist s, reZ such
that x=rab and y=sab. This implies that xe&(ra)(b)andy €(sa)(b), hence(ra)—(b) and (sa)—(b) are edges
in[,(2)=T, (Z). This yields that ye(ra)(b) and x €(sa)(b), it follows that there exist integers t and w such that
y=trab=tx and x=wsab=wy . This implies that x|y and y|x. Thus x=y.

Example: 16 The graphs I',(Z) and ['g(Z)are not identical, while 4+ 8.

It is natural to ask whether T, (Z) and T (Z) are isomorphic for every x, yeZ-{0,+1}, the answer is negative, as the
following example shows.

Example: 17 Clearlyl'c(Z)andrl'y, (Z)are not isomorphic, since. The number of vertices of T'y(Z) is equal to 2, while
the number of vertices of 'y, (Z) is equal to 4.

The next result gives a condition which ensure the isomorphism between the element ideal graph of the ring of integers
and the annihilating ideal graph of the ring of integers modulon.

Theorem: 4.2.4 If nezZ+-{1} is not prime number, then I'(Z) BG(Zn).

Proof: Since n>1 is not prime, then n has some divisors. We denote all positive divisors of n by a;, ay,...,a,with
o < oy <...<a, for some meZ+. Since a4, ay,...,a, are divisors of n, then there exist B4, Bz,...,Bm Such that n=ay By
, for every k=1,2,...,m. By Lemmad4.1.1, the only ideal vertices of I',(Z) are (o), (a3),..., (). It is clear that the only
ideal vertices of AG(Z,) are ideals (a7), (03)...., (&¢;) of Zn. Define the mapping f:I'y(Z)—AG(Z,) by f((oy))= (By)-
Obviously, fis onto. Now we give two ideal vertices (oq) and (o) of I'n(Z) such that f((c))=f((ct)). This implies that
(B) = (By). Since B, € (B) = (By), then B, — B, = sn for some integer s. This means that n|(B, — B). And this
statement is true only when o; = o. This implies that (o; )=(a;). Thus f is one to one. Suppose that (o) and (o) are
adjacent ideal vertices in T'y(Z). This means that ne (a;) (o). Then there exists an integer r such that n=ro;ay.Since
n=oyB; = o By, then (oyB) (aeBy) =(reyoy,) (rayay).Then the cancellation givesp; By = r?oyaq=rn. Thus §;8,=0. This
implies that f((a;))f((o,))=(B) (Bx)=(0). This means that f((a;)) and f((a,)) are adjacent ideal vertices in AG(Z,,).
Thus f preserves the adjacency property. Hence I',(Z) BG(Z,).

Example: 18 The graphs I'1»(Z) and AG(Z;,) can be drown as follows.

@ @ ® )

(6) @ @ 6

I'12(Z) AG(Z1,)

Clearly T'15(Z2) BG(Z1,).

The following corollaries follow from Theorem3.4.

Corollary: 3.5 If n>1 is a nonprime integer, then I',(Z) is a finite connected graph with diameter less than or equal
to 3, and the girth less than or equal to 4.

Proof: From Theorem1.4, the graph AG(Z,) is a finite connected graph with diameter less than or equal to 3, and the
girth less than or equal to 4. Then by Theorem3.4, the graph I',(Z) is also connected with diameter less than or equal to
3, and the girth less than or equal to 4.
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Corollary: 3.6 If neZ"-{1} is not prime number, then I',(Z) contains a subgraph which isomorphic to I',(Z).
Proof: From Theorem1.5, there exists a subgraph G of I',(Z) such that GRG(Z,). Then by Theorem 3.4, GE,(2).

Corollary: 3.7 If p is a prime number, then T,n (Z) has diameter 2 for every nez*-{1,2, 3}.

Proof: First we prove that diam(AG(Z,~))=2. Obviously the ideal vertices of AG(Z,n) are @D, ®?) ..., (" D). Let
(p™) and (p¥) be any two distinct ideal vertices of AG(Z,»). Since (p™)(p" 1) = (P*)(" 1) =(0) , then (p™) and
(pk) are adjacent to (p"~1) in AG(R).This means that the distance between any two distinct ideal vertices of AG(Z,n)

is less than or equal to 2. Since the diameter is the maximum distance between any two distinct vertices, then the
diameter of AG(Z,n) is equal to 2 for every n>3.ByTheorem3.4, diam(T},n (Z)=2 for every nez*-{1,2,3}.

Example: 19 Consider the element ideal graph Ty, (Z).
)
(2°)

@ @ @ Q

Clearly the diameter of T, (Z)is equal to 2.

Before we close this section, we give the following result.

Theorem: 3.8 Let neZ" and «a;, ay,.,a, be non-negative fixed integers. Then all graphs of the form
[ a1p,02 _p, an (Z) are isomorphic, for all choices of distinct prime numbers py, pa,..., pn.

Proof: Let pi, P2 ,..., Pn + Ou U2 ,..., Oq b& prime numbers with pi=p; and gi=q; for all i#j.Give two graph
Fp1°‘1p2°‘2...pn°‘“ (Z) and Fq1°‘1qz°‘2...qn°‘“ (Z). Define a mapping fZFplalpzaz___pnan (Z) - Fq1°‘1q2°‘2...qn°‘“ (Z) by
f((p1°1p2°2 ... 0 "))=(q1°1q,%2 ... q, ") , Where s, , S, ..., S, @re non-negative integers less than or equal to a4, oy,...,a,
respectively. Clearly , f is onto. Let I=(p;°1p;°2 ...p,°») and J=(p;"ip,"2...p,") be two ideal vertices of
[y a1p,a2 p an(Z) such that f(I)=f(J). This means that (q°q,%?...q*")=(q1"q>™ ...q,"). This implies
thatqstq,2 ...q°"=q;"1q," ...q, ™, since every two ideals of Z of distinct positive generators are distinct. It follows
that s=r;, for all i=1, 2,...n. Thus I=(p;°1p,°2 ...p,°")=(p1"1p,"2 ...p,"")=J. Hence f is one to one.
Letl=(p;°1p,°2 ...py°") and J=(p;"'p,"%..p,™) be adjacent ideal wvertices inl'y «ip,a2 p an(Z). Then
p1%1p, %2 . p, % €NJ. From Lemma2.1,p;°1p,°2 ...p,°n and p;"1p,"2 ...p,™ divide p;*“1p,*2 ...p,“n. Thus si=r< «a;
for all i=1, 2,...,n. This implies that q;°1q,°2 ...q,°" and q;"1q," ...q,™ divide q;%*1q,*? ...q,“".FromLemma2.1,
1%1q2%% . 4" € (91°192°2 ... ") (q171q2"2 ... q,)=F()f(J). This means that f(1) and f(J) are adjacent ideal
vertices in ['g ai1q,a2_q,an (Z). SO f preserves the adjacency property. Hencel, a1p,az_p an(Z) and Ty a1g,a2 g an(Z)
are isomorphic.

Example: 20 Consider the graphs I'sp(Z) and T'i54(2).

(15) (10) )] (22)
(2) 3) 2) )
®) 11)
(6) (14)
I30(Z)154(Z)

Clearly, I'sp(Z) @'154(2).
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