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ABSTRACT 
In this paper we give some definition and new definition of Common Fixed Point Theorems and Intuitionistic Fuzzy 
Metric Spaces.  We formulate the definition of weakly commuting and R-weakly commuting mappings. 
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1. INTRODUCTION 
 
Zadeh [32] in 1965 was introduction of the concept of fuzzy sets Grabiec [10] extend two fixed point theorems of 
Banach and Edelstein to contractive mappings of complete and compact fuzzy metric spaces in the sense of Kramosil 
and Michalek [17]. George and Veeramani ([8], [9]) modified the concept of fuzzy metric space introduced by 
Kramosil and Michalek [17] and defined a Hausdorff topology on this fuzzy metric space. obtained common fixed 
point theorems for weakly commuting maps and R-weakly commuting mappings.  
 
Atanassov [2] introduced and studied the concept of intuitionistic fuzzy sets as a generalization of fuzzy sets. Coker [4] 
introduced the concepts of the so called “intuitionistic fuzzy topological spaces”. Park [22], using the idea of 
intuitionistic fuzzy sets, define the notion of intuitionistic fuzzy metric spaces with the help of continuous t-norm [22] 
and continuous t-conorms as a generalization of fuzzy metric space due to George and Veeramani ([8], [9]).   
 
Continuous t-conorms as a generalization of fuzzy metric spaces due to Kramosil and Michalek [17]. Further, we 
introduce the notion of Cauchy sequences in intuitionistic fuzzy metric spaces.  We prove a common fixed point 
theorem for commuting mappings in intuitionistic fuzzy metric spaces. We first formulate the definition of weakly 
commuting and R-weakly commuting mappings in intuitionistic fuzzy metric spaces and prove the intuitionistic fuzzy 
version of Pant’s theorem [21]. 
 
2. INTUITIONISTIC FUZZY MERTIC SPACES 
 
Definition: 1 A binary operation *: [0, 1] × [0, 1] → [0, 1] is continuous t-norm if * is satisfying the following 
conditions: 

(i)  * is commutative and associative; 
(ii)  * is continuous; 
(iii)  a * 1 = a for all a∈[0, 1]; 
(iv)  a * b ≤ c * d whenever a ≤ c and b ≤ d for all a, b, c, d ∈  [0, 1]. 
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Definition: 2 A binary operation ◊: [0, 1] × [0, 1] → [0, 1] is continuous t-conorm if ◊ is satisfying the following 
conditions: 

(i)  ◊ is commutative and associative; 
(ii)  ◊ is continuous; 
(iii)  a * 0 = a for all a ∈  [0, 1]; 
(iv)  a * b ≤ c * d whenever a ≤ c and b ≤ d for all a, b, c, d ∈  [0, 1]. 

 
Definition: 3 A 5-tuple (X, M, N, *, ◊) is said to be an intuitionistic fuzzy metric space if X is an arbitrary set, * is a 
continuous t-norm, 3 is a continuous t-conorm and M, N are fuzzy sets on X2 × [0, ∞) satisfying the following 
conditions: 

(i)  M(x, y, t) + N(x, y, t) ≤ 1 for all x, y ∈  X and t > 0; 
(ii)  M(x, y, 0) = 0 for all x, y ∈  X; 
(iii)  M(x, y, t) = 1 for all x, y ∈  X and t > 0 if and only if x = y; 
(iv)  M(x, y, t) = M(y, x, t) for all x, y ∈  X and t > 0; 
(v)  M(x, y, t) * M(y, z, s) ≤  M(x, z, t + s) for all x, y, z ∈  X and s, t > 0; 
(vi)  for all x, y ∈  X, M(x, y, .) : [0,∞) → [0, 1] is left continuous; 
(vii)  Limt→∞M(x, y, t) = 1 for all x, y ∈  X and t > 0; 
(viii) N(x, y, 0) = 1 for all x, y ∈  X; 
(ix)  N(x, y, t) = 0 for all x, y ∈  X and t > 0 if and only if x = y; 
(x)  N(x, y, t) = N(y, x, t) for all x, y ∈  X and t > 0; 
(xi)  N(x, y, t) ◊ N(y, z, s) ≥ N(x, z, t + s) for all x, y, z ∈  X and s, t > 0; 
(xii)  for all x, y ∈  X, N(x, y, .) : [0,∞) → [0, 1] is right continuous; 
(xiii) limt→∞N(x, y, t) = 0 for all x, y in X. 

 
Then (M, N) is called an intuitionistic fuzzy metric on X. The functions M(x, y, t) and N(x, y, t) denote the degree of 
nearness and the degree of nonnearness between x and y with respect to t, respectively.   
 
Remark: 1 Every fuzzy metric space (X, M, *) is an intuitionistic fuzzy metric space of the form (X, M, 1 − M,  *, ◊) 
such that t-norm * and t-conorm ◊ are associated ([13]), i.e., x ◊ y = 1− ((1 − x) * (1 − y)) for all x, y ∈  X. 
 
Remark: 2 In intuitionistic fuzzy metric space X, M(x, y, .) is non-decreasing and N(x, y, .) is non-increasing for all    
x, y ∈  X. 
 
Definition: 4 Let (X, M, N, *, ◊) be an intuitionistic fuzzy metric space. Then  
(a) A sequence {xn} in X is said to be Cauchy sequence if, for all t > 0 and p > 0, 

( ) 1,,lim =+∞→
txxM npnn

, ( ) 0,,lim =+∞→
txxN npnn

 

(b) A sequence {xn} in X is said to be convergent to a point x ∈  X if, for all t > 0, 
( ) 1,,lim =

∞→
txxM nn

, ( ) 0,,lim =
∞→

txxN nn
 

 
Since * and ◊ are continuous, the limit is uniquely determined from (v) and (xi), respectively.  
 
Definition: 5 An intuitionistic fuzzy metric space (X, M, N, *, ◊) is said to be  

(i).complete if and only if every Cauchy sequence in X is convergent. 
(ii).compact if every sequence in X contains a convergent subsequence. 

 
Lemma: 1 Let S be a continuous maping of a complete metric space (x, d) into itself and T: x → X be a mapping 
satisfying the following conditions.  

(1) ( ) ( )xSxT ⊆  
(2) T is commutes with s 
(3) There exists 0 < k < 1.  Such that for all x, y ∈X 
  ( ) ( )( ) ( ) ( )( )ySxSkdyTxTd ,, ≤  

 
Then T and S have a unique common fixed point in x.  
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3. MAIN RESULT 
 
Theorem: 3.1 Let (X, M, N, *, ◊) be a complete Intuitionistic Fuzzy Metric Space and S.T: x → X be mapping 
satisfying the following conditions.  

(3.1) ( ) ( )xSxT ⊆  
(3.2) S is continuous  
(3.3) There exists 0 < k < 1.  Such that for all x, y ∈X 

 ( ) ( ) ( ) ( )tSySyMtSxSxMtSySxMktTyTxM ,,*,,*,,,, ≥ ( ) ( )( )tSxSyMtSySxM αα −2,,,*,,*  
 
and        ( ) ( ) ( ) ( )tTySyNtSxSxMtSySxNktTyTxN ,,*,,*,,,, ≤ ( ) ( )( )tSxSyMtSySxM αα −2,,,*,,*  
 
Then s and T have a unique common fixed point in X.  Provided S and T commute on X.  
 
Proof: Let x0 be an arbitrary point of X. By (3.1), we can construct a sequence {yn} in X such that 

1222122122 , ++++ ==== nnnnnn SxSxySxTxy  for n = 0, 1, …… Then, by (3.2), for α = 1 → q, q ∈  (0, 1), we 
have 
 
M(Sx2n, Sx2n+1, kt) ≤ M(Sx2n, Tx2n+1, t) * M(Sx2n, Sx2n, t) * M(Sx2n+1, Sx2n+1, t) * M(Sx2n, Tx2n+1, (1 → q)t) 

     * M(Sx2n+1, Sx2n, (1 + q)t) 
and 
N(Sx2n, Sx2n+1,  kt) ≤ N(Sx2n, Tx2n+1, t) ◊ N(Sx2n, Sx2n, t) ◊ N(Sx2n+1, Tx2n+1, t) ◊ N(Sx2n, Tx2n+1, (1 → q)t) 

   ◊ N(Sx2n+1, Sx2n, (1 + q)t) 
and so 
M(y2n, y2n+1, kt) ≥ M(y2n-1, y2n, t) * M(y2n, y2n-1, t) * M(y2n+1, y2n, t) * M(y2n, y2n, (1 → q)t) * M(y2n+1, y2n-1, (1 + q)t) 

  
            ≥ M(y2n-1, y2n, t) * M(y2n, y2n+1, t) * M(y2n+1, y2n, qt) 

and 
M(y2n, y2n+1, kt) ≤ N(y2n-1, y2n, t) ◊ N(y2n, y2n-1, t) ◊ N(y2n+1, y2n, t) ◊ N(y2n, y2n, (1 - q)t) ◊ N(y2n+1, y2n-1, (1 + q)t) 
 

            ≤ N(y2n-1, y2n, t) ◊ N(y2n, y2n+1, t) ◊ N(y2n+1, y2n, qt). 
 

Thus it follows that 
M(y2n, y2n+1, kt) ≥ M(y2n-1, y2n, t) * M(y2n+1, y2n, t) * M(y2n+1, y2n, qt) 

and 
 N(y2n, y2n+1, kt) ≤ N(y2n-1, y2n, t) * N(y2n+1, y2n, t) * N(y2n+1, y2n, qt) 
 
Since t-norm and t-conorm * and ◊ are continuous and M(x, y, ∙) and N(x, y, ∙) are continuous, letting q → 1, we have 

M(y2n, y2n+1, kt) ≥ M(y2n-1, y2n, t) * M(y2n+1, y2n, t) 
and 

N(y2n, y2n+1, kt) ≤ N(y2n-1, y2n, t) * N(y2n+1, y2n, t) 
 

Similarly, we also have 
M(y2n+1, y2n+2, kt) ≥ M(y2n, y2n+1, t) ◊ M(y2n+2, y2n+1, t) 

and 
N(y2n+1, y2n+2, kt) ≤ N(y2n, y2n+1, t) ◊ N(y2n+2, y2n+1, t) 
 

In general, we have, for m = 1, 2, . . ., 
M(ym+1, ym+2, kt) ≥ M(ym, ym+1, t) * M(ym+1, ym+2, t) 

and 
N(ym+1, ym+2, kt) ≥ N(ym, ym+1, t) * N(ym+1, ym+2, t) 
 

Consequently, it follows that, for m, p = 1, 2, …, 

M(ym+1, ym+2, kt) ≥ M(ym, ym+1, t) * M(ym+1, ym+2, pk
t

) 

and 

N(ym+1, ym+2, kt) ≥ N(ym, ym+1, t) * N(ym+1, ym+2, pk
t

) 
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By noting that M(ym+1, ym+2, pk
t

kp ) → 1 and N(ym+1, ym+2, pk
t

) → 0 as p → ∞, we have, for m = 1, 2, …,  

M(ym+1, ym+2, kt) ≥ M(ym, ym+1, t) 
and 

N(ym+1, ym+2, kt) ≤ N(ym, ym+1, t). 
 
Hence, {yn} is a Cauchy sequence in X. Since (X, M, N, *, ◊) is complete, it converges to a point z in X. Since {Sx2n}, 
{Sx2n+1}, {Sx2n+2} and {Tx2n+1} are subsequence of {yn}.  Therefore, Sx2n, Sx2n+1, Sx2n+2, Tx2n+1 → z as n → ∞. 
 
Then, since the pair (S, T) is compatible of type (I) and T is continuous, we have 
 

( ) ( )tzSTxMtzTzM nn
λ,lim,, 12 +∞→

≥ ,  

 
( ) ( )tzSTxNtzTzN nn

λ,lim,, 12 +∞→
≥ , TTx2n+1 → Tz. 

 
Now, for α = 1, setting x = x2n and y = Tx2n+1 in (3.2), we obtain 
 
(3.3) M(Sx2n, STx2n+1, kt) ≥ M(Sx2n, TTx2n+1, t) * M(Sx2n, Sx2n, t) 
 
                            ≥ M(STx2n+1, TTx2n+1, t) * M(Sx2n, TTx2n+1, t) * M(STx2n+1, Sx2n, t)                                             
and 
        N(Sx2n,STx2n+1, kt) ≤ N(Sx2n, TTx2n+1, t) ◊ N(Ax2n, Sx2n, t) ◊ N(STx2n+1, TTx2n+1, t) ◊ N(Sx2n, TTx2n+1, t) 

                           ◊ NM(STx2n+1, Sx2n, t): 
 
Thus, by letting the limit inferior on both sides of (3.3), we have 
 

( )ktSTxzM n
n

,,lim 12 +
∞→

, ( ) ( ) ( )tSTxTzMtzzMtTzzM n
n

,,lim*,,*,, 12 +
∞→

≥ , ( ) ( )tSTxzMtTzzM n
n

,,lim*,,* 12 +
∞→

 

and 

( )ktSTxzM nn
,,lim 12 +∞→

( ) ( ) ( )tSTxTzNtzzMtTzzM nn
,,lim,,,, 12 +∞→

◊◊≥ , ( ) ( )tSTxzNimltTzzN nn
,,,, 12 +∞→

◊◊  

 
Therefore, it follows that 
 

( )ktSTxzM n
n

,,lim 12 +
∞→

( ) ( )tSTxTzMtTzzM n
n

,,lim*,, 12 +
∞→

≥
 

 ( )tSTxzM n
n

,,lim 12 +
∞→

( ) 













≥ +

∞→ 2
,,lim*

2
,,*,, 12

tSTxzMtTzzMtTzzM n
n

( )tSTxzM n
n

,,lim* 12 +
∞→

 

                        
( ) 






≥ +

∞→
+

∞→ 2
,,lim*,,lim 1212

tSTxTzMtSTxzM n
n

n
n

λλ  

                           
( )tSTxzMtSTxzM n

n
n

n
,,lim*

2
,,lim* 1212 +

∞→
+

∞→






  

and 

( )ktSTxzN nn
,,lim 12 +∞→

( ) ( )tSTxTzNtTzzN nn
,,lim,, 12 +∞→

◊≤ ( )tSTxzM n
n

,,lim 12 +
∞→

◊  

                        
( ) 






◊






◊≤ +∞→ 2

,,
2

,,,, 12
tSTxzNimltTzzNtTzzN nn

( )tSTxzN nn
,,lim 12 +∞→

◊  

                        
( ) 






◊≤ +∞→+∞→ 2

,,lim,,lim 1212
tSTxTzNtSTxzN nnnn

λλ ( )tSTxzNtSTxzN nnnn
,,lim

2
,,lim 1212 +∞→+∞→

◊





◊  

and for λ = 1, 
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( ) 





≥ +

∞→
+

∞→ 2
,,lim,,lim 112

tsTxzMktsTxzM xn
n

n
n

 

 
 
and 

( ) 





≤ +∞→+∞→ 2

,,lim,,lim 1212
tsTxzNktsTxzN nnnn

 

it follows that zsTx n
n

=+
∞→

12lim .  Now using the compatibility, we have 

( ) ( ) 1,,lim,, 12 =≥ +
∞→

tsTxzMtzTzM n
n

λ
 

 

( ) ( ) 0,,lim,, 12 =≤ +∞→
tsTxzNtzTzN nn

λ
 
and so it follows Tz = z. 

 
Again, replacing x by x2n and y by z in (3.2) for α = 1, we have  

      ( ) ( ) ( )tSxAxMtzSxMktszAxM nnnn ,,*,,,, 2222 ≥ ( ) ( ) ( )tSxszMtzAxMtzszM nn ,,*,,*,,* 22  
and  

      ( ) ( ) ( )tSxAxNtzSxNktszAxN nnnn ,,,,,, 2222 ◊≤ ( ) ( ) ( )tSxszNtzAxNtzszN nn ,,,,,, 22 ◊◊◊  
 
and so letting n → ∞, we have  
M(sz, z, kt) ≥ M(sz, z, t) and N(sz, z, kt) ≤ N(sz, z, t), sz = z. 
 
Since B(X) ⊆ S(X), there exists a point Xu∈  such that Su = z.  By (3.2) for α = 1, we have  

      ( ) ( ) ( )tSuAuMtzSuMktzAuM ,,*,,,, ≥ ( ) ( ) ( )tSuzMtzAuMtzzM ,,*,,*,,*  
and  

      ( ) ( ) ( )tSuAuNtzSuNktzAuN ,,,,,, ◊≤ ( ) ( ) ( )tSuzNtzAuNtzzN ,,,,,, ◊◊◊  
 
and also  
M(Au, z, kt) ≥ M(Au, z, t) and N(Au, z, kt) ≤ N(Au, z, t), Au = z.   
 
Since the pair (A, S) is compatible of type (I) and Au = Su = z, we have  
 
          M(Au, SSz, t) ≥ M(Au, ASz, t) and N(Au, SSz, t) ≤ N(Au, ASz, t) 
and so  
         M(z, Sz, t) ≥ M(z, Az, t) and N(s, Sz, t) ≤ N(z, Az, t) 
 
Again by (3.2), for α = 1, we have  
 
       M(Az, z, kt) ≥ M(Sz, z, t) * M(Az, Sz, t) *M(z, z, t) * M(Az, z, t) * M(z, Sz, t) 
and  
       N(Az, z, kt) ≤ N(Sz, z, t) ◊ N(Az, Sz, t) ◊N(z, z, t) ◊ N(Az, z, t) ◊ N(z, Sz, t) 
 
Thus it follows that  
 
M(Az, z, kt) ≥ M(Sz, z, t) * M(Az, Sz, t) * M(Az, z, t) 

       ≥ M(Az, z, 
2
t

) 

and  
N(Az, z, kt) ≤ N(Sz, z, t) ◊ N(Az, Sz, t) ◊ N(Az, z, t) 

       ≥ N(Az, z, 
2
t

) 

and so, by Lemma 2, Az = z.  Therefore, Az = Sz = z and z is a common fixed point of A, S. The uniqueness of a 
common fixed point can be easily verified by using (3.2). 
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