A NOTE ON SYSTEMS OF SUMMATION INEQUALITIES

Dr. K. L. Bondar*
P. G. Dept. of Mathematics, N. E. S. Science College, Nanded - 431605 (M.S.) India
E-mail: klbondar_75@rediffmail.com

(Received on: 13-08-11; Accepted on: 23-08-11)
ABSTRACT
In this paper we discuss some systems of summation inequalities. We also discuss the under and over functions of systems of summation equations.

Keywords: Difference Equation, Summation Equation, Summation Inequality, Under and Over Function.

1. INTRODUCTION:

Agarwal [1], Kelley and Peterson [9] developed the theory of difference equations and difference inequalities. Some difference inequalities and comparison results are obtained by K. L. Bondar [2, 3]. Some summation and difference inequalities are obtained in K. L. Bondar [4, 5]. K. L. Bondar, V. C. Borkar, S. T. Patil [6, 7] and Dang H., Oppenheimer S.F.[8] obtained the existence and uniqueness results for difference equations. Some differential and integral inequalities are given in [10]. In this paper we discuss about systems of summation inequalities. We also discuss the under and over functions of systems of summation equations.

2. PRELIMINARY NOTES

Let $J=\left\{t_{0}, t_{0}+1 \ldots t_{0}+a\right\}, t_{0} \geq 0, t_{0} \in R$, and E be an open subset of R^{n}, consider the difference equations with an initial condition,

$$
\begin{equation*}
\Delta u(t)=g(t, u(t)), u\left(t_{0}\right)=u_{0} \tag{1}
\end{equation*}
$$

where $u_{0} \in E, u: J \rightarrow E, g: J \times E \rightarrow R^{n}$.
The function $\phi: J \rightarrow R^{n}$ is said to be a solution of initial value problem (1), if it satisfies

$$
\Delta \phi(t)=g(t, \phi(t)) ; \quad \phi\left(t_{0}\right)=u_{0} .
$$

The initial value problem is equivalent to the problem

$$
u(t)=u_{0}+\sum_{s=t_{0}}^{t-1} g(s, u(s))
$$

By summation convention $\sum_{s=t_{0}}^{t_{0}-1} g(s, u(s))=0$ and so $u(t)$ given above is the solution of (1).

3. MAIN RESULTS:

Theorem: 3.1 Assume that
(i) $K: J \times J \times R^{n} \rightarrow R^{n}$ and $K(t, s, x)$ is nondecreasing in x for each fixed (t, s) and one of the inequalities

$$
\begin{align*}
& x(t) \leq h(t)+\sum_{s=t_{0}}^{t-1} K(t, s, x(s)) \tag{2}\\
& y(t) \geq h(t)+\sum_{s=t_{0}}^{t-1} K(t, s, y(s)) \tag{3}
\end{align*}
$$

is strict where $x, y: J \rightarrow R^{n}$;

$$
\begin{equation*}
x(t)<y(t), \quad t \geq t_{0} . \tag{4}
\end{equation*}
$$

Proof: Assume that the conclusion (4) is false. Then the set

$$
Z=\bigcup_{i=1}^{n}\left[t \in\left[t_{0}, \infty\right): x_{i}(t) \geq y_{i}(t)\right]
$$

is nonempty. Let $t_{1}=\inf Z$. By (ii), it is clear $t_{l}>t_{0}$. Furthermore, since Z is closed, $t_{l} \in Z$, and consequently there exists an index j such that

$$
\begin{aligned}
& x_{j}\left(t_{1}\right)=y_{j}\left(t_{1}\right), \\
& x_{j}(t)<y_{j}(t), \quad t_{0} \leq t<t_{1}, \\
& x_{i}(t) \leq y_{i}(t), \quad t_{0} \leq t<t_{1}, \quad i \neq j .
\end{aligned}
$$

Since K is monotone nondecreasing in x, it follows that

$$
K_{j}\left(t_{1}, s, x(s)\right) \leq K_{j}\left(t_{1}, \mathrm{~s}, y(s)\right) .
$$

Hence, using (2) and (3), we arrive at the inequality

$$
\begin{aligned}
x_{j}\left(t_{1}\right) & \leq h_{j}\left(t_{1}\right)+\sum_{s=t_{0}}^{t_{1}-1} K_{j}\left(t_{1}, s, x(s)\right) \\
& \leq h_{j}\left(t_{1}\right)+\sum_{s=t_{0}}^{t_{1}-1} K_{j}\left(t_{1}, s, y(s)\right) \\
& <y_{j}\left(t_{1}\right) .
\end{aligned}
$$

This is a contradiction to the fact that $x_{j}\left(t_{l}\right)=y_{j}\left(t_{1}\right)$. Hence Z is empty and the theorem is proved.
Let us now consider the summation operator defined by

$$
\begin{equation*}
K \phi=\sum_{s=t_{0}}^{t_{1}-1} K(t, s, \phi(s)) . \tag{5}
\end{equation*}
$$

Definition: 3.2 We shall say that the operator K is monotone nondecreasing if, for any $\phi_{1}, \phi_{2}: J \rightarrow R^{n}$ such that, for any $t_{1}>t_{0}$,

$$
\phi_{1}(t)<\phi_{2}(t), \quad t_{0} \leq t<t_{1},
$$

implies

$$
K \phi_{1}\left(t_{t}\right) \leq K \phi_{2}\left(t_{t}\right) .
$$

Theorem: 3.3 Let the operator K defined by (5) be monotone nondecreasing. Suppose further that, for $t>t_{0}$,

$$
\begin{equation*}
x-K x<y-K y, \tag{6}
\end{equation*}
$$

where $x, y: J \times R^{n}$. Then $x\left(t_{0}\right)<y\left(t_{0}\right)$ implies

$$
x(t)<y(t), \quad t \geq t_{0} .
$$

Proof: Assume that the conclusion of theorem is false. Then set

$$
Z=\bigcup_{i=1}^{n}\left[t \in\left[t_{0}, \infty\right): x_{i}(t) \geq y_{i}(t)\right]
$$

is nonempty. Let $t_{1}=\inf Z$. By (ii), it is clear that $t_{1}>t_{0}$. Furthermore, since Z is closed, $t_{1} \in Z$, and consequently there exists an index j such that

$$
\begin{aligned}
& x_{j}\left(t_{1}\right)=y_{j}\left(t_{1}\right), \\
& x_{j}(t)<y_{j}(t), t_{0} \leq t<t_{1},
\end{aligned}
$$

$$
x_{i}(t) \leq y_{i}(t), \quad t_{0} \leq t<t_{1}, \quad i \neq j
$$

Since K is monotone nondecreasing in x and using above inequalities, it follows that,

$$
\begin{equation*}
K_{j} x_{j}\left(t_{1}\right) \leq K_{j} y_{j}\left(t_{1}\right) . \tag{7}
\end{equation*}
$$

As a result, (6) and (7) yield

$$
\begin{aligned}
x_{j}\left(t_{1}\right) & =x_{j}\left(t_{1}\right)-K_{j} x_{j}\left(t_{1}\right)+K_{j} x_{j}\left(t_{1}\right) \\
& <y_{j}\left(t_{1}\right)-K_{j} y_{j}\left(t_{1}\right)+K_{j} y_{j}\left(t_{1}\right) \\
& \leq y_{j}\left(t_{1}\right) .
\end{aligned}
$$

This contradicts the fact that, at $t=t_{1}, x_{j}\left(t_{1}\right)=y_{j}\left(t_{1}\right)$, and hence the proof is complete.
Definition: 3.4 A function $u: J \rightarrow R^{n}$ is said to be an under function of the system of summation equation

$$
\begin{equation*}
x=j+K x \tag{8}
\end{equation*}
$$

if it satisfies the inequality

$$
u<h+K u .
$$

Similarly u is said to be an over function of (8) if verifies the system of inequality

$$
u>h+K u,
$$

whereas if u satisfies equation (8), it is said to be a solution of (8).
Theorem: 3.5 Let the operator K defined by (5) be monotone nondecreasing. Suppose that $x, y, z: J \rightarrow R^{n}$ be an under function, a solution and an over function of (8), respectively on J. Then
implies

$$
x\left(t_{0}\right)<y\left(t_{0}\right)<z\left(t_{0}\right)
$$

$$
x(t)<y(t)<z(t), \quad t \geq t_{0}
$$

Proof: As $x(t)$ is an under function and $y(t)$ is a solution of (8) respectively, we have

$$
\begin{gathered}
x(t)<h(t)+\sum_{s=t_{0}}^{t-1} K(t, s, x(s)) \text { and } \\
y(t)=h(t)+\sum_{s=t_{0}}^{t-1} K(t, s, y(s))
\end{gathered}
$$

Also if $x\left(t_{0}\right)<y\left(t_{0}\right)$, they by Theorem 3.1, we have

$$
x(t)<y(t), \quad t \geq t_{0} .
$$

Similarly using definition of solution, an over function of (8) and by Theorem 3.1 again we obtain

$$
y(t)<z(t), \quad t \geq t_{0} .
$$

Hence

$$
x(t)<y(t)<z(t), \quad t \geq t_{0} .
$$

REFERENCES:

[1] R. Agarwal, Difference Equations and Inequalities, Morkel Dekkar, New York (1991).
[2] K. L. Bondar, Some scalar difference inequalities, Applied Mathematical Sciences, 5, No. 60, (2011), 2951 - 2956.
[3] K. L. Bondar, Some comparison results for first order difference equation, International Journal of Contemporary Mathematical Sciences, 6, No. 38, (2011), 1855 - 1860.
[4] K. L. Bondar, Infinite systems of difference inequalities, Vishwabharati, 2, Issue 2, (2011), 71-75.
[5] K. L. Bondar, Some summation inequalities reducible to difference inequalities, International Journal of Contemporary Mathematical Sciences, 2, No. 1, (2011).
[6] K. L. Bondar, V. C. Borkar and S. T. Patil, Existence and uniqueness results for difference phi Laplacian, boundary value problems, ITB Journal of Science, 43(A), No.1, (2011), 51 - 58.
[7] K. L. Bondar, V. C. Borkar and S. T. Patil, Some existence and uniqueness results for difference boundary value problems, Bulletin of pure and applied sciences, 29(F), No. 2, (2010), $295-301$.
[8] Dang H. and Oppenheimer S. F., Existence and uniqueness results for some nonlinear boundary value problems. J. Math. Anal. Appl. 198, (1996), $35-48$.
[9] Kelley and Peterson, Difference equations, Academic Press (2001).
[10] V. Laxmikantham and S. Leela, Differential and Integral inequalities Theory and application, Academic Press (1969).

