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ABSTRACT 
In this paper we introduce the concept of 𝛾𝛾 near-rings. In [8], S. Suryanarayanan and R. Balakrishnan investigated a 
near-ring N in which every N-subgroup is invariant. Motivated by this concept, we probe into the properties of a near-
ring N where every N-subgroup is an ideal. We discuss the properties of this newly introduced structure, obtain a 
complete characterization and a structure theorem for such near-rings. 
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1. INTRODUCTION 
 
Near-rings are generalized rings. If in a ring (N, +,∙) with two binary operations‘+’ and ‘∙’, we ignore the 
commutativityof ‘+’ and one of the distributive laws, (N, +, ∙) becomes a near-ring. If we do not stipulate the left 
distributive law, (N, +, ∙) becomes a right near-ring. Throughout this paper, N stands for a right near-ring (N, +, ∙) with 
at least two elements.Obviously, 0n = 0 for all n in N, where ‘0’ denotes the identity of the group (N, +). As in [3], a 
subgroup (M, +) of (N, +) is called (i) a left N-subgroup of N if MN⊆M, (ii) an N-subgroup of N if NM⊆M and (iii) an 
invariant N – subgroup of N if Msatisfies both (i) and (ii). Again in [3], a normal subgroup (I, +) of (N, +) is called (i) a 
left ideal if n(n′ + i) – nn′ ∈ I for all n, n′ ∈ N and i ∈ I (ii) a right ideal if  IN ⊆ I and (iii) an ideal if I satisfies both (i) 
and (ii). In [4], N is said to be leftbipotent if Na = Na2 for all a ∈ N. In [6], N is called a 𝛽𝛽3 near – ring if xNy = yxN for 
all x, y ∈ N. An idea I of N is called (i) a prime ideal if for all ideals J, K of N, JK ⊆ I ⇒ J ⊆I or K ⊆ I. (ii) a 
completely semiprime ideal if for a ∈ N, a2∈ I  ⇒a ∈ I. (iii) an IFPideal [1], if for a, b ∈ N, ab∈ I  ⇒an b∈ I for all n in 
N. (iv) a semiprime ideal if for all ideals J of N, J2⊆ I ⇒ J ⊆ I. If {0} is a semiprime ideal, then N is called a semiprime 
near-ring [2.87, p.67 of Pilz [3]]. Also in [3], N is said to have property P4 if for all ideals I of N, ab∈ I implies ba ∈ I 
for a, b in N. The concept of a mate function in N has been introduced in [7] with a view to handling the regularity 
structure with considerable ease. A map ‘f’ from N into N is called a mate function for N if x=xf(x)x for all x in N.  
Also the existence of mate functions is preserved under homomorphisms. By identity 1of N, we mean only the 
multiplicative identity of N.  
 
Basic concepts and terms used but left undefined in this paper can be found in Pilz [3]. 
 
2. NOTATIONS 

 
(i)   E denotes the set of all idempotents of N (e in N is called an idempotent if e2 = e) 
(ii)  L denotes the set of all nilpotents of N (a in N is nilpotent if ak = 0 for some positive integer k) 
(iii) Nd = {n∈N/ n(x+y) = nx + ny for all x, y in N} – set of all distributive elements of N. 
(iv) C(N) = {n∈N/ nx = xnfor all x in N} –  centre of N. 
(v)  N0 = {n∈ N / n0 = 0} – zero-symmetric part of N. 
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3. PRELIMINARY RESULTS 

 
We freely make use of the following results and designate them as R(1),R(2), ...etc 
 
R(1) N has no non-zero nilpotent elements if and only if x2 = 0⇒ x = 0for all x in N (Problem 14, p.9 of [5]) 

 
R(2) If f  is a mate function for N, then for every x in N, xf(x), f(x)x∈Eand Nx =Nf(x)x, xN = xf(x)N (Lemma 3.2 of [7]) 

 
R(3) If L={0} and N =N0then (i) xy = 0 ⇒yx = 0 for all x, y in N (ii) N has Insertion of Factors Property– IFP for short 
– i.e. for x, y in N, xy=0⇒xny=0 for all n in N. If N satisfies (i) and (ii) then N is said to have (∗, IFP) (Lemma 2.3 of 
[7]) 

 
R(4) N has strong IFP if and only if for all ideals I of N, and for  x, y∈ N, xy∈ I ⇒ xny ∈ I for  all n ∈ N (Proposition 
9.2, p.289 of [3]) 

 
R(5) N is subdirectly irreducible if and only if the intersection of any family of non-zero ideals is again nonzero 
(Theorem 1.60, p.25 of [3]) 
 
R(6) For any n in N, (0 : n) is a left ideal of N (1.43, p.21 of Pilz [3] ) 
 
R(7) If N is  zero-symmetric, then every left ideal is an N-subgroup (Proposition 1.34(b), p.19 of Pilz [3]) 

 
R(8) A zero-symmetric near-ring N has IFP if and only if (0: S) is an ideal where S is any non-empty subset of N          
(by 9.3, p.289 of [3]) 

 
R(9) A near-ring N is called simple if it has no non-trivial ideals of N. (By 1.36, p.19 of Pilz [3] ) 

 
R(10) If N is a 𝛽𝛽3 near-ring ,then every left N-subgroup of N is an N-subgroup of N (Proposition 5.3 (iv) of [6] ) 
 
4. DEFINITION AND EXAMPLES OF𝛄𝛄 NEAR-RINGS 
 
In this section we define  γ near-rings and give certain examples of this new concept. 
 
Definition4.1:  We say that a right near-ring N is a γ near-ring if every N-subgroup of N is an ideal of N. 
 
Examples 4.2: (a) The near-ring (N, +, ∙) defined on  Klein’s four group (N,+)with N={0,a,b,c} where ‘∙’is defined as 
per scheme 22, p.408 of Pilz [3] 
 

. 0 a b c 
0 0 0 0 0 
a a a a a 
b 0 0 0 0 
c a a a a 

is a γ near – ring.  
 
(b) Let (N, +) be the Klein’s four group as in (a) above. If multiplication is defined as per scheme 11, p.408 of Pilz [3], 
 
 

 
then N is not a γ near-ring, as the N-subgroup {0, a} is not an ideal. 
 
5. PROPERTIES OF γ NEAR-RINGS 
 
In this section we prove certain important properties of γ near-rings and give a complete characterization of such near-
rings. 
 
Proposition 5.1: Let N be a γ near-ring. If N is a 𝛽𝛽3  near-ring with identity and N = Nd, then every left N-subgroup is 
an ideal. 
 

∙ 0 a b c 
0 0 0 0 0 
a 0 a b a 
b 0 0 0 0 
c 0 a b a 
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Proof: Since N is a γnear-ring, every N-subgroup of N is an ideal.                   (1) 
 
Let M be any left N-subgroup of N. Since N is a 𝛽𝛽3  near-ring, by R(10), M is an N-subgroup of N. This implies M is an 
ideal [by (1)]. 
 
Therefore, every left N-subgroup of N is an ideal. 
 
Proposition 5.2: Let N be a γnear-ring. Then every left N-subgroup of N is invariant. 
 
Proof: Let M be an N-subgroup of N. Since N is a γ  near-ring, M becomes an ideal of N. Now, the desired result 
follows from the definition of right ideal. 
 
Remark 5.3: The converse of Proposition 5.2 is not valid. For example, consider the near-ring (N, +,∙) where (N,+)  is 
the usual group of integers modulo 6 and where ‘∙’ is defined as per scheme 24,p.408 of  Pilz [3] 
 

∙ 0 1 2 3 4 5 
0 0 0 0 0 0 0 
1 3 5 5 3 1 1 
2 0 4 4 0 2 2 
3 3 3 3 3 3 3 
4 0 2 2 0 4 4 
5 3 1 1 3 5 5 

 
We observe that, every N-subgroup of N is invariant. However N is not a γ near-ring, since the N-subgroup {0, 3} is 
not an ideal. 
 
Proposition 5.4: Let N be aγnear-ring which admits a mate function ‘f ’. Then 

(i)  for all N – subgroups A and B of N, A ⋂ B = AB. 
(ii) Nx ⋂ Ny = Nxy for all x, y in N. 

 
Proof: (i) Let A and B be two N-subgroups of N. Since N is a γ near-ring, A and B are ideals of N. Hence AN⊆ A and 
BN ⊆ B. 
 
Now, for x ∈ A and y ∈ B, xy ∈ AN ⊆ A.Therefore, AB ⊆ A. 
 
Also, xy∈ NB ⊆ B. Hence AB ⊆ B. Consequently, 

 
AB ⊆ A ⋂ B                                   (1) 

 
On the other hand, if z ∈ A ⋂ B, then since ‘f ’ is a mate function for N, z = zf(z)z ∈ (AN)B ⊆ AB. Thus 
 

A ⋂ B ⊆ AB                                   (2) 
 
Combining (1) and (2) A ⋂ B = AB for all N-subgroups A, B of N. 
 
(ii) Let x, y∈ N. Then by taking A = Nx and B = Ny in (i) we get, 
 
    Nx ⋂ Ny = NxNy                     (3) 
 
Again by taking A = Nx and B = N in (i) we get, Nx = Nx⋂N = NxN. Therefore,  
 
    Nxy=NxNy                                  (4) 
 
From (3) and (4), we get Nx⋂Ny = Nxy for all x, y in N. 
 
We furnish below a characterization theorem forγnear-rings. 
 
Theorem 5.5: Let N be a near-ring which admits a mate function ‘f ’. Then the following are equivalent. 

(i)   N is a γ near-ring. 
(ii)  Every N-subgroup is a completely semiprime ideal of N. 
(iii) Every N-subgroup is an IFP ideal. 
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Proof:  
(i)  ⇒  (ii): Let M be any N-subgroup of N. Since N is a γ near-ring, M becomes an ideal of N. Let x2∈M. Now, since  
‘f ’ is a  mate function for N, x = xf(x)x ∈ Nx = Nx⋂Nx = Nx2 [by Proposition 5.4 (ii)] ⊆ NM ⊆ M. Therefore, x ∈ M 
and (ii) follows. 
 
(ii)⟹ (iii): Let M be any N-subgroup of N and let xy ∈ M. Now, (yx) (yx) = y(xy)x ∈  NMN ⊆ M by (ii). Thus we 
have (yx)2∈ M and (ii) implies (yx) ∈ M.For all n in N, (x𝑛𝑛y)2 = (x𝑛𝑛y) (x𝑛𝑛y) = x𝑛𝑛(yx)𝑛𝑛y ∈ NMN ⊆ M and again (ii) 
guarantees that x𝑛𝑛y ∈ M and (iii) follows. 
 
(iii)⟹ (i)  Obvious. 
 
Proposition 5.6: Let N be a γnear-ring and let N admit a mate function ‘f ’. Then we have 

(i)   N is left bipotent. 
(ii)  N has property P4. 
(iii) N has strong IFP. 
(iv) N is a semiprime near-ring. 

 
Proof: Let N be a γnear-ring and let M be an N-subgroup of N. Then M is an ideal of N. 
 
(i) Since N admits a mate function ‘f‘, we have by Proposition 5.4 (ii), Nx = Nx⋂Nx = Nx2.It follows that Nx = Nx2 

and hence (i) follows. 
 
(ii) Let I be an ideal of N. Let xy∈ I. Now, (yx)2 = (yx)(yx) = y(xy)x ∈ NIN ⊆ IN ⊆ I.Therefore, (yx)2∈I.This implies 
yx∈ I [by Proposition 5.5 (ii)]. Consequently, N has property P4. 
 
(iii) Let xy∈ I.Then yx∈ I [by (ii)]. Now, yxn∈ IN ⊆I for all n in N. This implies y(xn) ∈ I. Therefore, xny ∈ I [by (ii)] 
and (iii) follows. 
 
(iv) Let I be any ideal of N such that I2⊆ M. Now, for x ∈ I, since ‘f ’ is  a mate function for N, x = xf(x)x ∈ INI ⊆ I2⊆ 
M. Hence I ⊆ M.Thus I is a semiprimeideal. In particular, {0} is a semiprimeideal of N. Therefore, N is a semiprime 
near – ring. 
 
We furnish below another characterization of𝛾𝛾 near-rings. 
 
Theorem 5.7: Let N admit a mate function ‘f‘ and let  E⊆C(N). Then N is a𝛾𝛾 near-ring if and only if xN = xNx = Nx2 
for all x in N. 
 
Proof: Since E⊆C(N)we first observe that N is zero-symmetric . 
 
For the ‘only if’ part, we see that for every x in N, as N is a 𝛾𝛾 near-ring, Nx, being an N-subgroup, is an ideal of N.  
 
Therefore, 
(Nx)N ⊆ Nx                                                                                            (1)      
and    
N(Nx) ⊆ Nx                                                                               (2) 
 
Hence for any n in N, since ‘f ‘is a mate function for N, xn = (xf(x)x)n = x(f(x)xn) = xn′x for some n′in N [by(1)].  
 
Therefore xn∈ xNx.Thus xN ⊆ xNx.Obviously xNx⊆Nx holds. Consequently we have, xN = xNx for all x in N. Again, 
for any n in N, nx2 = n(xf(x)x)x = x(f(x)nx)x [since E ⊆ C(N)] = x(n′′x)x for some n′′ in N [by (2)] ∈ xNx. Thus 
 
Nx2⊆ xNx                                                                               (3) 
 
For the reverse inclusion, we  have  for any n in N, xnx =xf(x)xnx = xnf(x)xx [since E ⊆ C(N)] ∈  xNxx[by (2)] = 
xf(x)Nxx[by R(2)] =Nxf(x)xx [since E ⊆C(N)] = Nxx[since ‘f‘ is  a mate function for N] =Nx2 . Therefore, xnx∈ Nx2. 
Consequently, 
xNx⊆Nx2                                                                               (4) 
 
Combining (3) and (4), xNx = Nx2 for all x in N                      (5) 
 
Collecting all these pieces we get, xN = xNx = Nx2 for all x in N  
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For the ‘if’ part, first let us show that N has (∗, IFP). For any x in N, since ‘f‘ is  a mate function for N,  x = xf(x)x ∈ 
xNx = Nx2 [by assumption (5)]. Therefore x = n1x2 for some n1 in N. This yields that x2 = 0 ⇒ x = 0 and R(1) 
guarantees L={0}. Also, since N=N0, from R(3), we see that N has (∗,IFP).                                                                   (6) 
 
We have, by R(2), for any x∈N, 
 
Nf(x)x = Nx                                                                               (7) 
 
Let S = {n – ne/n∈ N}. We claim that (0: S) = Nx. Since (n – ne)e = 0 for all n in N, we get(n – ne)Ne = {0}[since N 
has (∗, IFP)].  
 
Taking e = f(x)x,we get,(n – ne)Nx = {0} [by (7)]. Consequently, 
 
   Nx⊆ (0: S)                                   (8) 
 
To prove the reverse inclusion, we consider an arbitrary y in  (0: S).Therefore yS = {0}. Since f(x)x ∈ E, we have y(y – 
y f(x)x) = 0 ⇒yf(x)x(y – yf(x)x) = 0[since N has (∗,IFP)] and {y(y-yf(x)x)} –{yf(x)x(y-yf(x)x)}= 0.  
 
Hence (y – yf(x)x)2 = 0. Since L= {0}, R(1) guarantees that y – yf(x)x = 0. Thus y = yf(x)x  ∈N f(x)x =Nx[by R(2)].  
 
Therefore y∈Nx. This implies 
 
(0: S)⊆ Nx                                                                               (9) 
 
From (8) and (9), we get, Nx =(0: S)for all x in N.  
 
Now, R(8) guarantees that Nx is an ideal. If M is any N-subgroup of N, then we have M = ∑ Nxx∈M . It follows that M is 
an ideal and hence N becomes a 𝛾𝛾 near-ring. 
 
Theorem 5.8Let N be a  𝛾𝛾  near-ring which admits a mate function ‘f‘’ and let E⊆ C(N).Then  

(i)  any prime ideal of N is a maximal ideal.  
(ii) every N-subgroup of N is a  𝛾𝛾 near-ring in its own right. 

 
Proof: Let N be a  𝛾𝛾 near-ring. Since E⊆C(N), N  is  zero-symmetric. Further N has (∗, IFP). [by (6) of Theorem5.7] 
(i) Let P be a prime ideal of N. Let J be an ideal of N such that J≠P and that P ⊂ J ⊂ N.Let x ∈ J – P.For x in N, since  
‘f ‘ is a mate function for N, x = xf(x)x =f(x)xx [since E⊆C(N)]. Thus for all n in N, nx = nf(x)x2 and this implies         
(n – nf(x)x)x = 0. Since N has (∗, IFP), we get (n – nf(x)x)zx = 0. And z(n – nf(x)x)zx = z.0 = 0 [since N=N0] for all              
z ∈ N. Consequently, N(n – nf(x)x)Nx ={0}. If we let y = n – nf(x)x, then NyNx ={0}⊆ P. Also, since N is a 𝛾𝛾 near-
ring, Nx, Ny are ideals in N. Since P is prime, we get Ny⊆ P or Nx⊆ P. If Nx⊆P then x = xf(x)x∈Nx ⊆ P(i.e) x ∈ P 
which is clearly a contradiction to x∈ J – P. If Ny⊆P then Ny⊆ J and this demand sy = yf(y)y∈Ny ⊆ J. Therefore, y ∈ J 
(i.e)n – nf(x)x ∈J. Now, since x ∈J, nf(x)x ∈NJ⊆J [since N= N0, every left ideal is an N-subgroup]. Therefore, nf(x)x ∈J 
and this implies n ∈J forcing N = J. The desired result now follows. 
 
(ii) Let ‘f‘ be a mate function for N and let M be an N – subgroup of N. We observe that for all x in M, 
f(x)xf(x) ∈NMN⊆M. [since M is an ideal]. This fact guarantees that we can define a map g: M→M such that 
g(x)=f(x)xf(x). Clearly, g serves as a mate function for M.  
 
We establish that xM=xMx= Mx2 for all x in M. 
 
Now for x, y in M, xy∈xM⊆xN=xNx [by Theorem 5.7] =xNxf(x)x∈xNMNx⊆xMx[since M is an ideal].  
 
Therefore, xM ⊆xMx.For the reverse inclusion, if y ∈M, xyx ∈xMx⊆xNx=xN [by Theorem 5.7]  
 
                 =xf(x)xN∈xNMN⊆xM. Hence xMx⊆xM. Consequently, xM=xMxforall x in M.  
 
Again, xyx ∈ xMx⊆ xNx= Nx2 [by Theorem 5.7] =Nxf(x)xx∈ NMNx2⊆ Mx2. Thus xMx ⊆ Mx2.On the other hand, 
yx2∈ Mx2⊆ Nx2=xNx[by Theorem 5.7] =xf(x)xNx∈xNMNx⊆xMx. Therefore, Mx2⊆ xMx. Consequently,                 
xMx = Mx2for all x in M.  
 
Collecting all the sepieces, we get xM=xMx=Mx2 for all x in M. Now, Theorem 5.7 guarantees that M, as a sub near-
ring of N, is  a  𝛾𝛾 near-ring. 
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Remark 5.9: It is worth noting that the existence of a mate function and the property xN=xNx= Nx2 for all x in N are 
preserved under homomorphisms. Consequently, if N admits mate functions and is a 𝛾𝛾 near-ring, then any 
homomorphic image of N also does so. 
 
Theorem 5.10: Let N be a 𝛾𝛾near-ring with a mate function ‘f‘ and let E⊆ C(N).Then the following are equivalent. 

(i)  N is subdirectly irreducible. 
(ii) None of the non-zero idempotents of N is a zero divisor. 
(iii)N is simple. 

 
Proof: Since E⊆C(N), we first observe that N is zero-symmetric. 
(i) ⇒ (ii): Suppose N is sub directlyirreducible. Let J be the set of all non-zero idempotents in N which are zero-
divisors and suppose J is not empty. For any n in N, (0:n) is a left ideal of N [by R(6)].Since N  is zero-symmetric, (0:n) 
is an   N-subgroup of N.[by R(7)]. Thus for every e in J, (0: e) is an ideal of N [since N is a 𝛾𝛾 near-ring]. Let               
I = ⋂ (O ∶ e)e∈J . Since N is subdirectly irreducible, I≠{0} [by R(5)]. Let x ∈ I − {0}. Thus  xe = 0 for all e in J. (1) 
 
This implies f(x)xe=f(x)0[by(1)] = 0 [since N= N0]⇒ ef(x)x=0 [since L={0} and N has IFP by R(3)]. 
 
Therefore, f(x)x ∈J. From (1), we getxf(x)x=0⇒x=0which is a contradiction. This contradiction guarantees that J is 
empty and (ii) follows 
 
(ii)⇒(iii): Let M be a non-zero N-subgroup of N. Then M is an ideal of N and let x(≠ 0) ∈M.   
 
For any n in N, we have, nx=nxf(x)x. This implies (n – nxf(x))x=0. Therefore, (n – nxf(x))xf(x)=0f(x)=0. Hence by (ii), 
n – nxf(x) =0. This implies n=nxf(x)∈NMN⊆M [since M is an ideal of N]. Thus N⊆M.This shows that N has no 
nontrivial ideal of N. Hence N is simple [by R(9)]. 
 
(iii) ⇒ (i): Suppose N is simple. Obviously then N is subdirectly irreducible [by R (5)]. 
 
We conclude our discussion with the following structure theorem for 𝛾𝛾 near-rings. 
 
Theorem 5.11 Let N be a  𝛾𝛾  near-ring with a mate function ‘f’ and let E ⊆ C(N). Then N is isomorphic to a subdirect 
product of simple near-rings. 
 
Proof:   By Theorem 1.62, p.26 of Pilz [3], N is isomorphic to a subdirect product of sub directly irreducible near-rings 
Ni’s say and each Ni is a homomorphic image of N under the projection map 𝜋𝜋𝑖𝑖 . By Remark 5.9, N is isomorphic to a 
subdirect product of subdirectly irreducible  𝛾𝛾 near-rings Ni’s, each with a mate function. Obviously, each Ni is zero-
symmetric and satisfies E ⊆ C(N).Now, Theorem 5.10 demands that each Ni  is simple and this completes the proof of 
the theorem. 
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