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ABSTRACT

In this paper, we have accomplished the task of generalizing the fixed point theorems due to Som [3],
Taskovic [4] Mukherjee [1] in the context of semi-compatibility and weak compatibility in Menger space and
also it has been applied to prove common fixed point theorems for three, four and sequence of mappings. A
coincidence point theorem is also established for a multi-valued mapping satisfying a generalized condition
of Hausdorff distance function in (T, f, x)-orbitally complete Menger space. This theorem is generalized result
of Tiwari and Shrivastava [5] and Singh [2].

BASIC PRELIMINARIES
Following notations and definitions will be used in this paper.
CL(X) = {A: Alis non-empty closed subset of X}.

Definition 1: Let T be a multi-valued mapping on a Menger space (X, F, A) and X, € X. A sequence {X,} in X said to
be an orbit of T at X, denoted by o(T, Xo) if Xp1€ T"(Xo), i.€., Xn € TXp1, VNEN.

If T is a self mapping then the sequence {x,}, X, = T " (xo), V neN, is the orbit of T at x,.

Definition 2: A Manger space (X, FA) is said to be T-orbitally complete iff every cauchy sequence of the form

(Xn_ X, eTXn__l) converges in X.

Definition 3: Let S and T be a single-valued mappings and multi-valued mapping respectively on a Menger space
(X, F, A). A Menger space (X, F, A) is said to be (T, S, X)-orbitally complete iff every cauchy sequence of the form
(ani 13X, €TX, ) converges in X.

Definition 4: A multi-valued mapping T in Menger space (X, F, A) is said to be asymptotically regular at x,, if for
each sequence {X,} in X, X, eT)(n_1 and F XX (t) —1 as n— oo, forall t>0

n+l

Definition 5: Let Sand T be a single-valued mappings and multi-valued mapping respectively on a Menger space
(X, F, A). A point x in X is said to be a coincidence pointof S and T if Sx € Tx.

Definition 6: Self mappings A and S of a menger space (X, FA) are called semi-compatible if FASn,Su (€)—1,
for all € > 0,whenever {x,} is a sequence in X such that Ax,, Sx, — u, for some u in X.

Proposition 7: Let A and S be self mappings on a Menger space (X, FA) with A(a, a)> a, for all a €[0, 1]. If Sis
continuous then (A, S) is semi-compatible iff (A, S) is compatible.
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Proof: Consider a sequence {x,} in X such that {Ax,} — u and {Sx,} — u, As S is continuous, we have SAx, — Su.

Suppose that (A, S) is semi-compatible, then for given (€, &), we have a positive integer No (€, A) such that

&
FASH’SU (EJZJ.—l and K, g, (%jz:l_—/l, v n > N

Now
F 2 &
ASx,, SAX, (&) = A(F ASX,Su (gj F sax.su (2
> A (1A, 1)), Y n >N
> 1-A, Yn> No.

Hence the pair (A, S) is compatible.

Conversely, let the pair (A, S) be compatible. Then for given (€, 1), we have a positive integer No (€ , A) such that

FAan,SAxn (ngl—ﬂ, : FSAxn,Su (2)21_1 , V'n >N

Now,

Fasx. s, (‘9) = A(F AanvSAXn(%)’ F SAX,Su (%D

A (1, 1)
1'}\‘, V n = No.

(\VAAY

Hence ASx, — Su, i.e. (A, S) is semi-compatible.

Definition 8: Two self mappings A and S of a menger space (X, F, A) are said to be reciprocally continuous if

lim Asx, = At and lim sAx,= st,
Nn—o0 n—oo

whenever {x,} is a sequence in X such that

limax, = limsx, =t;  forsome te X

nN—oo n—oo
If A and S are both continuous, then they are obviously reciprocally continuous but the converse is not true.
MAIN RESULTS

The following theorem is given by R. Tiwari and S.K. Shrivastava [5]

Theorem 9: Let T be a multi-valued mapping from a metric space X to CL(X). If there exists f: X — X such that
TX C X, foreach x, y € X, and

ad (X, fy)+ﬂ[D( fx, Tx)+ D( fx,Ty)]+y[D( fx, fy)+D( fy,Tx)]
H(Tx Ty) <¢ 1 1
amax{d (fx, fy),E[D( fx, Tx)+ D( fy,Ty)],E[D( fx,Ty)+D( fy,Tx)]}
where max{ L+ 2y + O, B+y+0C}<1, o, P,y>0, 0<OC<1, ¢ (t) <qtforeacht>0 for some fixed 0<q
<1, (I) € Y and there exists an xo € X such that T is asymptotically regular at x,, and X is (T, f, x)-orbitally
complete, then T and f have a coincidence point.

Taking the clue from above theorem 9, we prove the following theorem

Theorem 10: Let (X, F, A) be a Menger space, where A (a, b) = min {a, b}, for all a, b,e [0, 1] and T be a multi-valued
mapping from X to CL (X). If there exists mapping S: X — X such that
(@ TXCSX, foreachx, yeX, and
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Fos() Foan® Fon (O Fon () Fgnlt)
maX{F Sx,Sy(t)’ F Sx,Tx(at)’ F Sy,Ty((Z_a)t)’ F Sy,Ty(ﬂt)’ F Sy,Tx((z_ﬂ)t)}

forallt>0, a,Be (0, 1),
(c) o) <qt,Vt> 0, 0<qg<l, ¢ €D,
(d) There exists an X, € X such that T is asymptotically regular at x,
(e (T, S, x) - orbitally complete.

Then T and S have a coincidence point.

®  Fo,,(4t)>min

Proof: Choose xq € X satisfying (a). We shall construct two sequences {x,} and {y.,} as follows:

Since TX < SX, Choose y; = Sx;eTxq. If TXg = Txy, Choose y, = Sx,eTx; such that y;= y,, If Txy # Tx4, from the
definition of Hausdorff distance one can choose y, = Sx, e Tx, such that

I:yl, Y, (t) Z I:TXO, TX, (t)
In general, ChooSe Yn+2 = SXp+2 € TXpe1, SUCh that Yoy = Vies if TX, = TXpeq and F (t) > FTxn,Tx (t)

Yni1r Yne2 n+l
Otherwise.

We wise to show that {y,} is cauchy. For this it is sufficient to show that {y,,} is cauchy.

Suppose on the contrary that {y,.} is not cauchy. Then there is an € > 0 such that for each integer 2k, k =0, 1, 2, ....
there exists even integers 2nk and 2mk with 2k < 2nk < 2mk such that

€)< 1 1
Yonk Y 2mk (&) 1)

Let for each integer 2k, 2mk be the least positive integer exceeding 2nk satisfying (1). Then,

€)>1-1 2
Yonk Y 2mk (€)= )

€)<1-\n
Yonk Y 2mk ( )

As such, for each even integer 2k, we have

a2 >F & £ £
= Yonk+Y2mk (&) F yznk'yzmk(g) = A(F yznk'yzmkz(3j’ F y2mkz'yzmk1(3j’ F y2mk1'y2mk(3

So by (2) and k —o0, we get
lim F g)=1 3
n—oo Yonk: Y2mk (€) @)
Now, using (3) in the triangle inequality

& &
F yan’ykafl(g) = A( F y2nk’y2mk (Ej’ F yka’ykal(EJJ

and

& & &
> — — _
F yan+1'y2mkfl(8) B A[F yznk+1'y2nk[3j’ F y2nk’y2mk[3j’ F y2mk'y2mk1(3jj

Taking k — o

Yonk+1: Y 2mk-1 (8) >A[1-A 1] = 1-A and @

Yonk+1: Y2mk-1 (€) =apa1,11=10 -
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Then,

t t
Fy,y,. )2 A( Fy.v.. 1(¢ j Fy.. ym(qj D

gt o
> A( F YooY, 1( j FT)(2 ‘ 1Tszk( 2 j}

A F SxMSxm(Zt)’ F SXan+1’TX2nk+1(2t)’ F szmk’TXka(
=AlF ym’ym(fj min F SXan+1'TX2mk(2t), F Sxm’TxM(Zt)’
maX[F SXZ”M'Sszk(Zt)’ F SXan+1’TX2nk+1(2(1_ r)t)’ F SXan+1’TX2nk+1(2(1+ r)t)'

2t),

F SXamer TXzme (2(1_ q)t)' F Sszk*Tinm(z(l_'- q)t)

Putting B=1-q,a=1-r1,q,re(0, 1)

¢t F y2nk+1’y2mk(2t)' F yan+1’y2nk 2( ) F yzmk y2mk 1( )
A F yan’yznm(?j,min F yznk+1’y2mk+1(2t), F yka‘y2nk+2(2t)1
F yznk+1’y2mk(2t)’ F yznk+1’y2nk+z(2(1_ r)t), F yznk+1’yznk+1(2(1+ r)t),
F y2nk+1’y2mk+1(2(l_q)t), F yzmk’yznk+1(2(1+ q)t)

max

Since ¢ is upper semi-continuous, taking the limit as k — oo
1A= A (L (1-2), 1,1, (1-2), (1-2), max {(1-2), 1, 1, (1-2), (1 - M)})

14> 140,

which is a contraction.

Thus {y,} is a cauchy sequence. Since SX is (T, S, Xo)-orbitally complete, {y,} converges to a point u in X. Hence
there exists a point z in SX such that u= Sz. Then,

FSz,Tz(¢t)2A(F Sz X, (¢tj Fsx...mz (étn

(Fosc3)Fnn(?)

F SX. Sz (20).F anvTxn(Zt)’ F Sz Tz (1),

=AM F Sz vam(%)min F Sx, Tz (Zt)’ F Sz ’Txn(Zt)’

ax[ F SXSz (2). F anxTxn(z(l_ r)t), F SzTz (2(1+ r)t),
F Sx. Tz (2(1—q)t), F Sz vTxn(Z(lJrq)t)
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Taking limit n — o, we have

LF Sz Tz (20).F Sz Tz (21),

F o (4)4) Lmin) F Sz Tz (2).F sz Tz (21),

LFs, 1, (2Q-0t)Fg, 7, (2Q+n)t),
Fs; 1, (20-0)t).Fg, 7, (2@+a)t)

> A(l,min(l, Fe (2t),1))

Fond)>F o (2)
ForV)2Fon(d Y

Hence Sz € Tz.
z is a coincidence pointof S and T.
APPLICATIONS

In this section we study the existence of fixed point for multi-valued and self-mappings in a metric space (X, d) using
the results in main result.

Theorem 11: Let (X, d) be a complete metric space and T:(X, d) — (CL(X), du). If there exists a mapping S: (X, d) —»
(X, d) such that

(@ TX < SX, foreachx,y € X, and
(b) dw (Tx, Ty) < ¢ max (d (Sx, Sy), du (S, TX), du (Sy, TY), du (Sx, Ty), dw (Sy, Tx)), min {d (Sx, Sy),

1 1
E [dH (Sy! Ty) + dH (SX! TX)]! E [dH (SX1 Ty) + dH (Sy! TX)]}:
where ¢ (t) < gt foreacht >0, 0<q>1,¢ € ® and

(c) there exists an X € X such that T is asymptotically regular at X ,
(d) Xis (T, S, X) - orbitally complete.

Then T and S have a coincidence point.

Proof: If we define F: X x X — D" by Fa g (t) = H (t - dy (A, B)), where A, BeCL(X), then the space (X, F, min)
with a t-norm A = min is a Menger space and the topology induced by the metric d coincides with the topology t . And
for any Tx, Ty € CL (X), we have

Fre, 7y (91) H [¢t - dn (TX, Ty)]
H [ot - max {d (Sx, Sy), dy (Sx, TX), di (S, Ty),
dy (Sx, Ty), dy (Sx, TX)}, min {d (Sx, Sy),

% [di (SX, TX) + dw (Sx, TY)], % [dn (Sx, Ty) + du (Sy, TX)1}]

(AVANAY)

1 1
H [t - max {dly d21 d31 d4y d51 min {dea E (d7 + ds)! E (dg + d]_()) }]
where, d; =d (Sx, Sy), d, =dy (SX, TX), d3 = dy(SX, Ty), ds = dy (SX, Ty),

ds = dy (SX, TX), dg =d (Sx, Sy),d; =dy (Sx, Tx), dg = dy (Sx, Ty),
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dg =dy (Sx, Ty), dig = dy (Sy, TX)
=H [min {(t-dy), (t-dy), (t-ds), (t-dy), (t-ds),
max {(t - d), (t - % (d7 - dg)), (t- %(dg +di))}

=min{H (t-dy), H(t-dy), H(t-ds), H(t-ds), H (t-ds),
max {H (t- dg), H (at - d7), H ((2 - o) t - dg), H (Bt - dg),
H ((2 - B) t- dip )}] for some a, B € (0, 2)

=min {Fsy sy (1), Fsx < (1), Fsy 1y (), Fsx 1y (1), Fsy, 7 (1),
max {Fsx sy (1), Fsx 1x (at), Fsy 1y (2 - o)), Fsy 1y (Bt), Fsy, 7= ((2 - B) O}

Thus Theorem 10 follows from Theorem 11 immediately.
Hence there exists a coincident point.
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