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ABSTRACT 
In this paper the terms, po filter, po filter of a po semigroup generated by a subset and principle po filter generated by 
an element a  in a po semigroup  are introduced.   It is proved that in a po semigroup S, the nonempty intersection of a 
family of po filters is also a po filter of S.  It is also proved that a nonempty subset F of a po semigroup S is a po filter if 
and only if  S\F is a completely prime po ideal of S or empty. It is proved that every po filter F of a po semigroup S is a 
i) po-c-system of S  ii) po-m-system of S  and iii) po-d-system of S.  It is proved that the po filter of a po semigroup S 
generated by a nonempty subset A is the intersection of all po filters of S containing A.  Let S be a po semigroup and a 
∈ S, then it is proved that N(a)  is the least filter of S containing {a}.  
 
Mathematical subject classification (2010): 20M07; 20M11; 20M12. 
 
Key Words: po filter, po filter of a po semigroup generated by a subset and principle po filter generated by an element 
a in a po semigroup.  
 
 
1. INTRODUCTION 
 
The algebraic theory of semigroups was widely studied by CLIFFORD [2], [3], PETRICH [4] and LJAPIN [5].  The 
ideal theory in general semigroups was developed by ANJANEYULU [1]. In this paper we introduce the notions of po 
filter, po filter of a po semigroup generated by a subset and principle po filter generated by an element a  in a po 
semigroup and characterize po filters, po filters of a po semigroup generated by a subset and principle po filters 
generated by an element a  in a po semigroup.  in po semigroups. 
 
2. PRELIMINARIES   
 
Definition 2.1: A semigroup S is said to be a partially ordered semigroup if S is a partially ordered set such that 

ba ≤  ⇒ bxax ≤ , xbxa ≤   for all xba ,, ∈ S. 

 
Definition 2.2: A po (left/right) ideal A of a po semigroup S is said to be a completely prime (left/right) ideal of S 
provided x, y ∈  S and xy∈A implies either x∈  A or y ∈A. 
 
Definition 2.3: A po ideal A of a po semigroup S is said to be a prime ideal of S provided X,Y are ideals of S and      
XY ⊆  A ⇒  X ⊆A or Y ⊆A. 
 
Definition 2.4: A nonempty subset A of a po semigroup S is said to be an m-system provided for any a, b ∈A implies 
that ( S1aS1bS1) ∩ A ≠ ∅. 
 
Definition 2.5:  A po ideal A of a po semigroup S is said to be a completely semiprime po ideal provided x∈S, 

nx ∈A for some natural number n implies x ∈A. 
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Definition 2.6: Let S be a po semigroup. A nonempty subset A of S is said to be a d-system of S if   
a ∈  A  ⇒ na ∈  A for all natural number n. 
 
Definition 2.7:  A po ideal A of a po semigroup S is said to be semiprime po ideal provided X is po ideal of S and 
Xn⊆  A for some natural number n implies X ⊆ A. 
 
Definition 2.8: A non-empty subset A of a po semigroup S is said to be an n-system provided a ∈A implies that           
(S1aS1) ∩ A ≠ ∅. 
 
Theorem 2.9: Every completely prime po ideal of a po semigroup S is a prime po ideal of S. 
 
Theorem 2.10: Let S be a commutative po semigroup. A po ideal A of S is a prime po ideal if and only if A is a 
completely prime po ideal. 
 
Theorem 2.11:  Every m-system in a po semigroup S is an n-system. 
 
Theorem 2.12: A po ideal Q of a po semigroup S is a semiprime po ideal if and only if S\Q is an n-system of S (or) 
empty. 
 
Theorem 2.13: Every completely prime po ideal of a po semigroup S is a completely semiprime po ideal of S. 
 
Theorem 2.14: A po ideal A of a po semigroup S is completely semiprime if and only if S\A is a d-system of S or 
empty. 
 
Theorem 2.15: Let S be a commutative po semigroup.  A po ideal A of S is completely semiprime if and only if it is 
semiprime. 
 
Theorem 2.16: If N is an n-system in a po semigroup S and a∈N, then there exist an m-system M in S such that          
a ∈M and M ⊆N. 
 
3. PO FILTERS IN PO SEMIGROUPS 
 
Definition 3.1: A po sub semigroup F of a po semigroup S is said to be a po left filter of S if 

(1) a, b ∈ S, ab ∈ F ⇒ a ∈ F. 
(2) a, b ∈ T, a ≤ b and a ∈ F ⇒ b ∈ F. 

 
Note 3.2: A po subsemigroup F of a po semigroup S is a po left filter of S iff 

(1) a, b ∈ S, ab ∈ F ⇒ a ∈ F.  
(2) (F] ⊆ F. 

 
Theorem 3.3: The nonempty intersection of two po left filters of a po semigroup S is also a po left filter of S.  
 
Proof: Let A, B be two po left filters of S.   
 
Let a, b ∈ S, ab ∈ A∩B.  
 
ab ∈ A∩B ⇒ ab ∈ A and ab ∈ B.   
 
a, b ∈ S, ab ∈ A, A is a po left filter of S ⇒ a ∈ A.   
 
a, b ∈ S, ab ∈ B, B is a po left filter of S ⇒ a ∈ B.  
 
a ∈ A, a  ∈ B ⇒ a  ∈ A∩B. 
 
a, b ∈ S, ab ∈ A∩B ⇒ a ∈ A∩B.   
 
Let a, b ∈ S, a ≤ b and a ∈ A∩B.  Now a ∈ A∩B ⇒ a ∈ A, a ∈ B. 
 
a, b ∈ S, a ≤ b, a ∈ A,  A is a po left filter of S ⇒ b ∈ A. 
 
a, b ∈ S, a ≤ b,  a ∈ B,  B is a po left filter of S ⇒ b ∈ B. 
 



P. M. Padmalatha1, A. Gangadhara Rao*2 and T. Radha Rani3 /  
Partially Ordered Filters in Partially Ordered Semigroups / IRJPA- 4(8), August-2014. 

© 2014, RJPA. All Rights Reserved                                                                                                                                                                      573 

 
b ∈ A, b ∈ B ⇒ b ∈ A∩B. Thus a, b ∈ S, a ≤ b, a ∈ A ∩ B⇒ b ∈ A ∩ B.   
 
Therefore A ∩ B is a po left filter of S. 
 
Theorem 3.4: The nonempty intersection of a family of po left filters of a po semigroup S is also a po left filter of S. 
 
Proof: Let { }Fα α∈∆  be a family of po left filters of S and let F Fα

α∈∆

=


.   

Let a, b ∈ S, ab ∈ F.  Now ab ∈ F ⇒ ab ∈ Fα
α∈∆


⇒ ab ∈ Fα for each α ∈ Δ. 

ab ∈ Fα , Fα  is a po left filter of S ⇒ a ∈ Fα  for each α ∈ Δ ⇒ a ∈ Fα
α∈∆


⇒ a ∈  F.  

Let a, b ∈ S, a ≤ b and a ∈ F.  Now a ∈ F ⇒ a ∈ Fα
α∈∆


⇒ a ∈ Fα  for each α ∈ Δ   

 
a, b ∈ S, a ≤ b,  a ∈ Fα , Fα  is a po left filter of S ⇒ b ∈ Fα for all α ∈ Δ. 
 
⇒ b ∈ Fα

α∈∆


⇒ b ∈ F. Therefore F is a po left filter of S. 

 
Theorem 3.5: A nonempty subset F of a po semigroup S is a po left filter if and only if S\F is a completely prime po 
right ideal of S or empty. 
 
Proof: Suppose that F is a po left filter of S and S\F ≠ ∅.  Let b ∈ S and a ∈ S\F.  
 
Now a ∈ S\F ⇒ a ∉ F. 
 
If  ab ∈ F,  then since F is a po left filter of S, a ∈ F. It is a contradiction.  
 
Therefore ab ∉ F.  Hence ab ∈ S\F. 
 
Let a ∈ S\F and s ∈ S such that s ≤ a.  
 
If s ∈ F then s ≤ a, F is a po left filter of S ⇒ a ∈ F.  It is a contradiction.  
 
Therefore s ∈ S\F. Thus S\F is a po right ideal of S. 
 
Let a, b ∈ S and ab ∈ S\F.  Now ab ∉ F.   
 
Suppose if possible a ∉ S\F, b ∉ S\F. 
 
Then a ∈ F, b ∈ F ⇒ ab ∈ F.  It is a contradiction.  
 
Therefore either a ∈ S\F or b ∈ S\F.   
 
Hence S\F is completely prime. 
 
Therefore S\F is a completely prime po right ideal of S. 
 
Conversely suppose that S\F is a completely prime po right ideal of S or empty. 
 
If S\F = ∅, then F = S.  Thus F is a po left filter of S. 
 
Assume that S\F ≠ ∅.  Let a, b ∈ S, and ab ∈ F.  If a ∉ F then a ∈ S\F.   
 
b ∈ S, a ∈ S\F, S\F is a po right ideal of S ⇒ ab ∈ S\F ⇒ ab ∉ F.  It is a contradiction.  Thus a ∈ F.   
 
Let a, b ∈ S, a ≤ b and a ∈ F.  If b ∉ F, then b ∈ S\F.   
 
a, b ∈ S, b ∈ S\F , a ≤ b, S\F is a po right ideal of S ⇒ a ∉ F.  It is a contradiction.   
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Thus b ∈ F. Therefore F is a po left filter of S. 
 
Corollary 3.6: Let S be a po semigroup and F is a po left filter of S.  Then S\F is a prime po right ideal of S or empty. 
 
Proof: Since F is a po left filter, by theorem 3.5, S\F is a completely prime po right ideal of S or empty. By theorem 
2.9, S\F is a prime po right ideal of S or empty. 
 
Definition 3.7: A subsemigroup F of a po semigroup S is said to be po  right filter of S if   

(1) a, b ∈ S, ab ∈ F ⇒ b ∈ F   
(2) a, b ∈ S, a ≤ b and  a ∈ F ⇒ b ∈ F. 

 
Note 3.8: A po subsemigroup F of a po semigroup S is a po right filter of S if 

(1) a, b ∈ S, ab ∈ F ⇒ b ∈ F.   
(2) (F] ⊆ F. 

 
Theorem 3.9: The nonempty intersection of two po right filters of a po semigroup S is also a po right filter.  
 
Proof: Let A, B be two po right filters of S.   
 
Let a, b ∈ S, ab ∈ A∩B.  
 
ab ∈ A∩B ⇒ ab ∈ A and ab ∈ B.   
 
a, b ∈ S, ab ∈ A, A is a po right filter of S ⇒  b ∈ A.   
 
a, b ∈ S, ab ∈ B, B is a po right filter of S ⇒  b ∈ B.    
 
b ∈ A, b ∈ B ⇒ b ∈ A ∩B.  
 
a, b ∈ S, ab ∈ A∩B ⇒ b ∈ A∩B. 
 
Let a, b ∈ S, a ≤ b and a ∈ A∩B.  Now a ∈ A∩B ⇒ a ∈ A, a ∈ B. 
 
a, b ∈ S, a ≤ b, a ∈ A,  A is a po right filter of S ⇒ b ∈ A. 
 
a, b ∈ S, a ≤ b, a ∈ B,  B is a po right filter of S⇒ b ∈ B. 
 
b ∈ A, b ∈ B ⇒ b ∈ A∩B. Thus a, b ∈ S, a ≤ b, a ∈ A ∩ B⇒ b ∈ A∩B.   
 
Therefore A∩B is a po right filter of S. 
 
Theorem 3.10: The nonempty intersection of a family of po right filters of a po semigroup S is also a po right filter. 
 
Proof: Let { }Fα α∈∆  be a family of po right filters of S and let F Fα

α∈∆

=


.   

Let a, b ∈ S, ab ∈ F.  Now ab ∈ F ⇒ ab ∈ Fα
α∈∆


⇒ ab ∈ Fα  for each α ∈ Δ. 

ab ∈ Fα , Fα  is a po right filter of S ⇒ b ∈ Fα . 
 
Let a, b ∈ S, a ≤ b and a ∈ F.  Now a ∈ F⇒ a ∈ Fα

α∈∆


⇒ a ∈ Fα  for each α ∈ Δ    

a, b ∈ S, a ≤ b, a ∈ Fα , Fα  is a po right filter of S ⇒ b ∈ Fα for all α ∈ Δ. 
 
⇒ b ∈ Fα

α∈∆


⇒ b ∈ F. 

 
Therefore F is a po right filter of S.  
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Theorem 3.11: A nonempty subset F of a po semigroup S is a po right filter if and only if S\F is a completely prime po 
left ideal of S or empty. 
 
Proof: Suppose that F is a po right  filter of S and S\F ≠ ∅.  Let b ∈ S and a ∈ S\F.  
 
Now a ∈ S\F ⇒ a ∉ F. 
 
If  ba ∈ F, then since F is a po right filter of S, a ∈ F. It is a contradiction. 
 
Therefore ba ∉ F.  Hence ba ∈ S\F. 
 
Let a ∈ S\F and  s ∈ S such that s ≤ a. 
 
If s ∈ F then  s ≤ a, F is a po right filter of S  ⇒  a ∈ F.  It is a contradiction.   
 
Therefore s ∈ S\F. Thus S\F is a po left ideal of S. 
 
Let a, b ∈ S and ab ∈ S\F.  Now ab ∉ F.   
 
Suppose if possible a ∉ S\F, b ∉ S\F. 
 
Then a ∈ F, b ∈ F ⇒ ab ∈ F. It is a contradiction.  
 
Therefore either a ∈ S\F or b ∈ S\F.   
 
Hence S\F is completely prime. 
 
Therefore S\F is a completely prime po left ideal of S. 
 
Conversely suppose that S\F is a completely prime po left ideal of S or empty. 
 
If S\F = ∅, then F = S. Thus F is a po right filter of S. 
 
Assume that S\F ≠ ∅.  Let a, b ∈ S and ab ∈ F.  If b ∉ F then b ∈ S\F.  
  
a ∈ S, b ∈ S\F, S\F is a po left ideal of S ⇒ ab ∈ S\F ⇒ ab ∉ F. It is a contradiction.   
 
Thus b ∈ F.  
 
Let a, b ∈ S, a ≤ b and a ∈ F.  If b ∉ F, then b ∈ S\F.   
 
a, b ∈ S, b ∈ S\F, a ≤ b, S\F is a po left ideal of S ⇒ a ∈ S\F  
 
⇒ a ∉ F.  It is a contradiction.   
 
Therefore F is a po right filter of S.   
 
Corollary 3.12: Let S be a po semigroup and F is a po right filter.  Then S\F is a prime po left ideal of S or empty. 
 
Proof: Since F is a po right filter. By theorem 3.11, S\F is a completely prime left po ideal of S or empty. By theorem 
2.9, S\F is a prime po left ideal of S or empty.           
 
Definition 3.13: A po subsemigroup F of a po semigroup S is said to be po filter of S if   

(1) a, b ∈ S, ab ∈ F ⇒ a, b ∈ F   
(2) a, b ∈ S,  a ≤ b and  a ∈ F ⇒ b ∈ F 

 
Note 3.14: A po subsemigroup F of a po semigroup S is a po filter of S iff  

(1) a, b ∈ S, ab ∈ F ⇒ a, b ∈ F  
(2) (F] ⊆ F. 

 
Note 3.15: A po sub semi group F of a po semigroup S is a po filter of S iff F is a po left filter, a po right filter and po 
lateral filter of S. 
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Definition 3.16: A po filter F of a po semigroup S is said to be a proper po filter if F ≠ S. 
 
Theorem 3.17: The nonempty intersection of two po filters of a po semigroup S is also a po filter of S.  
 
Proof: Let A, B be two po filters of S.   
 
Let a, b ∈ S, ab ∈ A∩B.   
 
ab ∈ A∩B ⇒ ab ∈ A and ab ∈ B.   
 
a, b ∈ S, ab ∈ A, A is a po filter of S ⇒ a, b ∈ A.   
 
a, b ∈ S, ab ∈ B, B is a po filter of S, ⇒ a, b ∈ B.  
 
a, b ∈ A, a, b ∈ B ⇒ a, b ∈ A∩B.   
 
Let a, b ∈ S, a ≤ b and a ∈ A∩B.  Now a ∈ A∩B ⇒ a ∈ A, a ∈ B. 
 
a, b ∈ S, a ≤ b, a ∈ A,  A is a po filter of S ⇒ b ∈ A. 
 
a, b ∈ S, a ≤ b, a ∈ B,  B is a po filter of S ⇒ b ∈ B. 
 
b ∈ A, b ∈ B ⇒ b ∈ A∩B. Thus a, b ∈ S, a ≤ b and a ∈ A ∩B ⇒ b ∈ A∩B.   
 
Therefore A∩B is a po filter of S. 
 
Theorem 3.18: The nonempty intersection of a family of po filters of a po semigroup S is also a po filter of S. 
 
Proof: Let { }Fα α∈∆  be a family of po filters of S and let F Fα

α∈∆

=


.   

Let a, b ∈ S, ab ∈ F.  Now ab ∈ F ⇒ ab ∈ Fα
α∈∆


⇒ ab ∈ Fα for each α ∈ Δ. 

ab ∈ Fα , Fα  is a po filter of S ⇒ a, b ∈ Fα .    
 
Let a, b ∈ S, a ≤ b and a ∈ F. Now a ∈ F ⇒ a ∈ Fα

α∈∆


⇒ a ∈ Fα  for each α ∈ Δ    

a, b ∈ S,  a ≤ b and a ∈ Fα , Fα  is a po filter of S ⇒ b ∈ Fα for all α ∈ Δ. 
 
⇒ b ∈ Fα

α∈∆


⇒ b ∈ F. 

 
Therefore F is a po filter of S.  
 
Theorem 3.19: A nonempty subset F of a po semigroup S is a po filter if and only if S\F is a completely prime po ideal 
of S or empty. 
 
Proof: Suppose that F is a po filter of S and S\F ≠ ∅.  Let b ∈ S and a ∈ S\F.  
 
Now a ∈ S\F ⇒ a ∉ F. 
 
If ab ∈ F, then since F is a po filter of S, a ∈ F. It is a contradiction.  
 
Therefore ab ∉ F.  Hence ab ∈ S\F.    
 
Similarly ba ∈ S/F. 
 
Let a ∈ S\F and s ∈ S such that s ≤ a.  
 
If s ∈ F then s ≤ a, F is a po filter of S ⇒ a ∈ F. It is a contradiction.   
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Therefore s ∈ S\F.  Thus S\F is a po ideal of S. 
 
Let a, b ∈ S and ab ∈ S\F.  Now  ab ∉ F.   
 
Suppose if possible a ∉ S\F, b ∉ S\F. 
 
Then a ∈ F, b ∈ F ⇒ ab ∈ F.  It is a contradiction.  
 
Therefore either a ∈ S\F or b ∈ S\F.   
 
Hence S\F is completely prime. 
 
Therefore S\F is a completely prime po ideal of S.  
 
Conversely suppose that S\F is a completely prime po ideal of S or empty. 
 
If S\F = ∅, then F = S.  Thus F is a po filter of S. 
 
Assume that S\F ≠ ∅.  Let a, b ∈ S and ab ∈ F.  If a ∉ F then a ∈ S\F. b ∈ S, a ∈ S\F, S\F is a po ideal of S ⇒ ab ∈ S\F  
 
⇒ ab ∉ F. It is a contradiction.   
 
Thus a ∈ F.  
 
Similarly b ∈ F. 
 
Let a, b ∈ S, a ≤ b and a ∈ F. If b ∉ F, then b ∈ S\F.   
 
a, b ∈ S, b ∈ S\F, a ≤ b, S\F is a po ideal of S ⇒ a ∈ S\F ⇒ a ∉ F.  It is a contradiction.   
 
Therefore F is a po filter of S.   
 
Corollary 3.20: Let S be a po semigroup.  If F is a po filter, then S\F is a prime po ideal of S or empty. 
 
Proof: Since F is a po filter of S. By theorem 3.19, S\F is a completely prime po ideal of S or empty. By theorem 2.9, 
S\F is a prime po ideal of S or empty.  
 
Corollary 3.21: A nonempty subset F of a commutative po semigroup S is a po filter if and only if S\F is a prime po 
ideal of S or empty. 
 
Proof: Suppose that S\F is po filter of commutative po semigroup S.   
 
By corollary 3.20, S\F is prime po ideal of S or empty. 
 
Conversely suppose that S\F is a prime po ideal of S or empty.  
 
If S\F = ∅, then F = S.  Thus F is a po filter of S.  
 
Assume that S\F is a prime po ideal of S.  
 
By theorem 2.10, S\F is a completely prime po ideal of S or empty.   
 
By theorem 3.19, F is a po filter of S. 
 
Theorem 3.22: Every po filter F of a po semigroup S is a po-c-system of S. 
 
Proof: Suppose that F is a po filter.   
 
By theorem 3.19, S\F is a completely prime po ideal of S.  
 
By theorem 2.12, F is a po-c-system of S. 
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Theorem 3.23: A po semigroup S does not contain proper po filters if and only if S does not contain proper completely 
prime po ideals. 
 
Proof: Suppose that a po semigroup S does not contain proper po filters.  
 
Let A be a completely prime po ideal of S and A ⊂ S.   
 
Then ∅ ≠ S\A ⊆ S and S\ (S\A) (= A) is a completely prime po ideal of S.   
 
Since S\A is the complement of A to S, by theorem 3.19, S\A is a po filter of S.   
 
Then S\A = S and hence A = ∅.  It is a contradiction. 
 
Therefore S does not contain proper completely prime po ideals. 
 
Conversely suppose that S does not contain proper completely prime po ideals.   
 
Let F be a po filter of S and F ⊂ S.   
 
Since S\F ≠ ∅, by theorem 3.19, S\F is a completely prime po ideal of S.  
 
Then S\F = S and hence F = ∅.  It is a contradiction. 
 
Therefore S does not contain proper po filters.  
 
Theorem 3.24: Every po filter F of a po semigroup S is a po-m-system of S. 
 
Proof: Suppose that F is a po filter of a po semigroup S.   
 
By corollary 3.20, S\F is a prime po ideal of S.   
 
By theorem 2.12, S\(S\F) = F is a po-m-system of S or empty. 
 
Corollary 3.25: Let S be a po semigroup.  If F is a po filter, then S\F is a completely semiprime po ideal of S. 
 
Proof: Suppose that F is a po filter of a po semigroup S.   
 
By theorem 3.20, S\F is a completely prime po ideal of S.   
 
By theorem 2.13, S\F is a completely semiprime po ideal of S. 
 
Corollary 3.26: Every po filter F of a po semigroup S is a po-d-system of S. 
 
Proof: Suppose that F is a po filter of a po semigroup S.  
 
By corollary 3.25, S\F is a completely semiprime po ideal of S.   
 
By theorm 2.14, S\(S\F) = F is a po-d-system of S or empty. 
 
Corollary 3.27: Let S be a po semigroup.  If F is a po filter, then S\F is a semiprime po ideal of S. 
 
Proof: Suppose that F is a po filter of a po semigroup S.  
 
By theorem 3.19, S\F is a completely prime po ideal of S.   
 
By theorem 2.13, S\F is a completely semiprime po ideal of S.  
 
By theorem 2.15, S\F is a semiprime po ideal of S. 
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Corollary 3.28: Every po filter F of a po semigroup S is a po-n-system of S. 
 
Proof: Suppose that F is a po filter of a po semigroup S.   
 
By corollary 3.27, S\F is a semiprime po ideal of S.   
 
By theorem 2.16, S\ (S\F) = F is a po-n-system of S. 
 
Definition 3.29: Let S be a po semigroup and A be a nonempty subset of S.  The smallest po left filter of S containing 
A is called po left filter of S generated by A and it is denoted by Fl (A). 
 
Theorem 3.30: The po left filter  of a po semigroup S generated by a nonempty subset A of S is the intersection of all 
po left filters of S containing A. 
 
Proof: Let Δ be the set of all po left filters of S containing A.   
 
Since S itself is a po left filter of S containing A, S ∈ Δ.  So Δ ≠ ∅. 
 
Let 

F

F F∗

∈∆

=


.  Since A ⊆ F for all F ∈ Δ, A F ∗⊆ .  So F* ≠ ∅. 

 
By theorem 3.4, F* is a po left filter of S. 
 
Let K be a po left filter of S containing A.   
 
Clearly A ⊆ K and K is a po left filter of S.   
 
Therefore K ∈ Δ ⇒ F* ⊆ K. Therefore F* is the smallest po left filter of S containing A and hence F* is the po left filter 
of S generated by A. 
 
Definition 3.31: Let S be a po semigroup and A be a nonempty subset of S.  The smallest po right filter of S containing 
A is called po right ideal of S generated by A and it is denoted by Fr (A). 
 
Theorem 3.32: The po right filter  of a po semigroup S generated by a nonempty subset A is the intersection of all po 
right filters of S containing A. 
 
Proof: Let Δ be the set of all po right filters of S containing A.  
  
Since S itself is a po right filter of S containing A, S ∈ Δ.  So Δ ≠ ∅. 
 
Let 

F

F F∗

∈∆

=


.  Since A ⊆ F for all F ∈ Δ, A F ∗⊆ .  So  F* ≠ ∅. 

 
By theorem 3.11, F* is a po right filter of S. 
 
Let K be a po right filter of S containing A.   
 
Clearly A ⊆ K and K is a po right filter of S.   
 
Therefore K ∈ Δ ⇒ F* ⊆ K. Therefore F* is the smallest po right filter of S containing A and hence F* is the po right 
filter of S generated by A. 
 
Definition 3.33: Let S be a po semigroup and A be a nonempty subset of S.  The smallest po filter of S containing A is 
called po filter of S generated by A and it is denoted by N (A). 
 
Theorem 3.34: The po filter of a po semigroup S generated by a nonempty subset A is the intersection of all po filters 
of S containing A. 
 
Proof: Let Δ be the set of all po filters of S containing A.   
 
Since S itself is a po filter of S containing A, S ∈ Δ.  So Δ ≠ ∅. 
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Let 

F

F F∗

∈∆

=


.  Since A ⊆ F for all F ∈ Δ, A F ∗⊆ .  So F* ≠ ∅. 

 
By theorem 3.15, F* is a po filter of S. 
 
Let K be a po filter of S containing A.   
 
Clearly A ⊆ K and K is a po filter of S.   
 
Therefore K ∈ Δ ⇒ F* ⊆ K.   
 
Therefore F* is the po filter of S generated by A.   
 
Definition 3.35: A po filter F of a po semigroup S is said to be a principal po filter  provided F is a po filter generated 
by {a} for some a ∈ S. It is denoted by N(a). 
 
Corollary 3.36: Let S be a po semigroup and a ∈ S.  Then N(a) is the least filter of S containing {a}. 
 
Note 3.37: For every a ∈ S, the intersection of all po filters containing {a} is again a po filter and thus the least po filter 
containing {a }. 
 
Theorem 3.38: If N(b) ⊆ N(a), then N(a)\N(b), if it is nonempty, is a completely prime po ideal of N(a). 
 
Proof: Clearly N(b) is a po filter of N(a), By theorem 3.19, N(a)\N(b) is a completely prime po ideal of N(a). 
 
Theorem 3.39: If a, b ∈ S and b ∈ N(a), then N(b) ⊆ N(a). 
 
Proof: From the definition of the principal po filter,  it is clear. 
 
Corollary 3.40: If a, b ∈ S and a ≤ b then N(b) ⊆ N(a). 
 
Proof: Since a ≤ b then it is clear that b ∈ N(a).  
 
By theorem 3.39, we have N(b) ⊆ N(a). 
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