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ABSTRACT 
In  this  paper  new  class  of  sets  called semi- maximal weakly  open  sets and  semi-minimal weakly  closed sets  are 
introduced  in  topological  spaces. We show  that the complement of  semi-maximal weakly open set is a semi-minimal 
weakly closed set and some  properties  of  the  new  concepts  have  been  studied.  
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1. INTRODUCTION 
 
In the year 2001 and 2003, F.Nakaoka and N.oda [1] [2] [3] introduced and studied minimal open [resp. minimal closed 
] sets which are subclass of open [resp.closed sets]. The family of all minimal open [minimal closed] in a topological 
space X is denoted by mio(X) [mic(X)]. Similarly the family of all maximal open [maximal closed] sets in a topological 
space X is denoted by MaO(X)[MaC(X)].The complements of minimal open sets and maximal open sets are called 
maximal closed sets and minimal closed sets respectively. In the year 1963, N.Levine[4] introduced and studied semi-
open sets. A subset A of a topological space X is said to be semi-open set if there exist some open set U such that 
U⊂A⊂Cl(U). The family of all semi-open sets of X is denoted by SO(X). The Complement[5] of semi-open set is 
called semi-closed set in X. The family of all semi-closed sets are denoted by SC(X). In the year 2009, S.S.Benchalli 
and B.M.Ittanagi [6] introduced and studied semi-maximal open and semi-minimal closed sets in topological spaces. In 
the year 2000, M.Sheik john [7] introduced and studied  weakly closed sets and  weakly open sets in topological spaces. 
In the year 2014 R.S.Wali and Vivekananda Dembre[ 8] introduced and studied maximal weakly open sets and minimal 
weakly closed sets in topological spaces. 
 
Definition 1.1[1]: A proper non-empty open subset U of  a  topological space X is said to be minimal open set if any 
open set which is contained in U is 𝜑𝜑   or U.   
  
Definition 1.2 [2]:  A proper non-empty open subset U of a topological space X is said to be maximal open set if any 
open set which is contained in U is  X  or U.  
 
Definition 1.3[3]: A proper non-empty closed subset F of a topological space X is said to be minimal closed set if any 
closed set which is contained in F is 𝜑𝜑  or F.  
   
Definition 1.4 [3]: ]: A proper non-empty closed subset F of a topological space X is said to be maximal closed set if 
any closed  set which is contained in F  is X  or F. 
 
Definition 1.5 [4]: A subset A of  a topological spaces X is said to be semi-open set if there exist some open set U such 
that  U⊂A⊂Cl(U). 
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Definition 1.6 [5]: The complement of semi-open set is called semi-closed set in X. 
 
Definition 1.7 [6]: A set A in a topological space X is said to be semi maximal open set if there exists a maximal open 
set M such that M⊂A⊂Cl(M). 
 
Definition 1.8 [6]: A subset N of a topological space X is said to be semi-minimal closed set if X-N is semi-maximal 
open set. 
 
Definition 1.9 [7]:  A subset A of (X, 𝜏𝜏) is called weakly closed set if  cl(A) ⊆ U Whenever A ⊆ U and U is Semi-open 
in X. 
 
Definition1.10[7]: A subset A in (X, 𝜏𝜏) is called weakly open set in X if Ac is weakly closed set in X. 
 
Definition1.11[8]: A proper non-empty weakly open subset U of X is said to be maximal weakly open set if any 
weakly open set which is contained in U is X or U. 
 
Definition1.12[8]: A proper non-empty weakly closed subset F of X is said to be minimal weakly closed set if any 
weakly closed set which is contained in F is 𝜑𝜑 or F. 
 
2. SEMI MAXIMAL WEAKLY OPEN SETS  
 
Definition 2.1: A set A in a topological space X is said to be semi-maximal weakly open set if there exists a maximal 
weakly open set M Such that M⊂Α⊂S-Cl(M).  
 
The family of all semi-maximal weakly open sets in a topological space X is denoted by SMawo(X). 
 
Example 2.2: Let X={a,b,c}, 𝜏𝜏 ={ X, 𝜑𝜑 ,{a},{b},{a,b}} be a topological  space. 
 
Weakly open sets: {X, 𝜑𝜑,{a},{b},{a,b}} 
 
Maximal weakly open sets are : {a,b} 
 
Semi-maximal-weakly-open-sets: {X, {a,b}} 
 
Mawo(x) ⊂ SMawo(x).  
 
The above results are given in below  implication diagram. 
 

 
                        
Theorem  2.3: If  M is a semi- maximal weakly open set in a topological space X and  M⊂Ν⊂S-Cl(M) then N is also 
semi-maximal weakly open in X. 
 
Proof:  Let M be a semi-maximal weakly open in X. Then by definition 2.1 there exists a maximal weakly open set U 
in X such that  U⊂Μ⊂S-Cl(U). Since Μ⊂S-Cl(U) it follows that S-Cl(M)⊂Cl(S-Cl(U))= S-Cl(U). But from hypothesis 
N⊂S-Cl(M) therefore it follows that  U⊂Ν⊂S-Cl(U). Thus there exists a maximal weakly open set U such that 
U⊂Ν⊂S-Cl(U). Therefore by definition 2.1 it follows that N is semi-maximal weakly open in X. 
 
Theorem 2.4: Let X be a topological space and Miwo(x) be the class of all maximal weakly open sets in X the 
following results hold good. 
(i)  Mawo(x) ⊂ SMawo(X) 
(ii) If M∈SMawo(X) and M⊂Ν⊂S-Cl(M) then N⊂SMawo(X). 
 
Proof: This follows from theorem 2.3. 
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Theorem 2.5: : Let X be a topological space. Y be subspace of X and M be a subset of Y. If M is semi-maximal 
weakly open in X then M is semi-maximal weakly open in Y. 
 
Proof: Suppose M is semi-maximal weakly open in X. By definition 2.1 there exists a maximal weakly open set N in X 
such that N⊂Μ⊂S-Cl(N). Now N⊂Μ⊂Y. Hence Y N=N. Since N is maximal weakly open in X. Y  N=N is maximal 
weakly open in Y. Now we have N⊂Μ⊂S-Cl(N).Therefore Y N⊂Y M⊂Y S-Cl(N), which implies N⊂Μ⊂S-Cl γ(N). 
Thus there exists a maximal weakly open set N in Y Such that N⊂Μ⊂ S -Clγ(N). Therefore by definition 2.1 it follows 
that M is semi-maximal weakly open in Y. 
 
Theorem 2.6: Let X be a topological space. Let M,N be maximal weakly open sets in X and U⊂X such that  
N⊂U⊂S-Cl(N) if  M ∩ N = ∅  then  U∩W= ∅.  
 
Proof: Since M∩N = ∅, it  follows that  N⊂X−Μ  therefore S-Cl(N)⊂Cl(X-M)=X-M. Since X-M is minimal weakly 
closed set and every minimal weakly closed set is closed set . Also we have N⊂U⊂ S-Cl(N). Therefore U⊂ S -
Cl(N)⊂X-M .Τhus U⊂X-M which means U W = ∅. 
 
Theorem 2.7: Intersection of two semi-minimal weakly open sets need not be semi-minimal weakly open . It can be 
Shown by the following example. 
 
LetX={a,b,c,d}, 𝜏𝜏 ={X, 𝜑𝜑, {a,b},{c,d}} be a topological space. 
 
Semi-maximal-weakly-open-sets:{X,{a,b,c},{a,b,d},{b,c,d},{a,c,d}} take any two semi-maximal weakly open sets 
{a,b,d} ∩ {b,c,d}={b,d}Which is not a semi-maximal weakly  open set. 
 
3. SEMI-MINIMAL WEAKLY CLOSED SETS 
 
Definition 3.1: A subset N of a topological space X is said to be semi-minimal weakly closed set if X-N is semi-
maximal weakly open set. 
 
The family of all semi-minimal weakly closed sets in a topological space X is denoted by SmiC(X).  
 
Example 3.2: Let X= {a,b,c}, 𝜏𝜏 = {X, 𝜑𝜑,{a},{b},{a,b}} be a topological space. 
 
Closed sets are: {X, 𝜑𝜑 ,{b,c},{a,c}{c}} 
 
Weakly closed sets: {X, 𝜑𝜑,{b,c},{a,c},{c}. 
 
Minimal weakly Closed sets:  {c} 
 
Semi-minimal-weakly-closed-sets: {𝜑𝜑,{c}} 
 
The above results are given in below implication diagram.      

 
               
Theorem 3.3: A subset W of a topological space X is semi-minimal weakly closed iff there exists a minimal weakly  
closed set N in X such that int(N)⊂W⊂N. 
 
Proof: Suppose W is a semi-minimal weakly closed in X then by definition 3.1 X-W is semi-maximal weakly open in 
X. Therefore by definition 2.1 there exists a maximal weakly open set M such that  M⊂X-W⊂S-Cl(M) which implies 
that X-[S-Cl(M)]⊂X-[X-W]⊂X-M  which implies X-[S-Cl(M)] ⊂W ⊂X-M. But it is know that X-[S-Cl(M)]=int(X-M) 
take X-M=N so,that  N is a minimal weakly closed set such that int(N) ⊂W ⊂N.  
 
 
 
 



Vivekananda Dembre* and Jeetendra Gurjar/ 
 On Semi-Maximal Weakly  Open and Semi-Minimal Weakly Closed Sets in Topological Spaces / IRJPA- 4(10), Oct.-2014. 

© 2014, RJPA. All Rights Reserved                                                                                                                                                                       602 

 
Conversly, suppose that there exist  a minimal weakly closed set N in X such that int(N) ⊂W ⊂N. Therefore it follows  
that X-N ⊂[X-W]⊂X-int(N).But it is know that X-int(N))=Cl(X-N). Therefore there exists a maximal weakly open set 
X-N such that X-N ⊂X-W⊂S-Cl(X-N). Thus by definition 2.1 it follows that X-W is semi-maximal weakly open in X. 
Hence by definition 3.1 it follows that W is Semi-minimal weakly closed set. 
 
Theorem 3.4: If N is semi-minimal weakly closed in X and  int(N)⊂W⊂N then W is semi-minimal weakly closed in 
X. 
 
Proof:  Let N be semi-minimal weakly  closed in X then by definition of semi-minimal weakly closed sets there exists 
a minimal weakly closed set F such that  int(F) ⊂N ⊂F. Now int(F) ⊂N which implies int(F)=int(int(F))⊂int(N). But 
int(N) ⊂W, we have int(F) ⊂W. Further since int(F) ⊂ int(N) ⊂W ⊂ N ⊂F. It follows that int(F) ⊂W ⊂ F. Thus there 
exists a minimal weakly closed set F such that   int(F) ⊂W ⊂F therefore W is semi-minimal weakly closed in X. 
 
Theorem 3.5: The following three properties of a subset N of a topological space X are equivalent. 
(i) N is semi-minimal weakly  closed set in X 
(ii) int(cl(N)) ⊂N 
(iii) ( X-N) is semi-maximal weakly open set in X. 
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