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ABSTRACT

The least upper bound and the greatest lower bound of a collection of congruences in a lattice can be realized as a quotient of direct
limit and as a sub lattice of inverse limit. This is explained in this article.
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1. INTRODUCTION

A poset (partially ordered set) is a set P with a partial order relation < which is reflexive, anti-symmetric and transitive. A
latticeis a poset (P, <) inwhichany two elements have a least upper bound and a greatest lower bound. An equivalence relation
is a relation that is reflexive, symmetric and transitive. All equivalence classes of an equivalence relation form a partition; and a
partition leads to an equivalence relation. If two partitions P1 and P2 of a set X are such that P1 is a refinement of P; then it is

written as P < P+ This relation makes the collection of all partitions as a complete lattice in which every subset has a least upper
bound and a greatest lower bound. An equivalence relation 8 on a set X is sometimes used in the following form:x = y (mod
8), when x and y are related by 8 in X. An equivalence relation 6 on a lattice (L, <) or (L, V,A) is called a congruence relation,
if it has the following substitution properties: xVz = yVz (mod 8) and xAz = yAz (mod 6), whenever x = y (mod 6), and x,y,z €
L. The collection of all congruences on a lattice L form a sub lattice of the lattice of all partitions of L and it is also a complete
lattice. It is known (see Theorem 3.9 in [1]) how to construct the least upper bound and the greatest lower bound of a given
collection of congruences. A construction for the same in terms of inverse limit and direct limit is explained here. It is expected
that every view on congruencelattices would be helpful to understand the structure of congruence lattices.

2.DEFINITIONS

Let us say that a subset A of a lattice (L, V,A) is closed in L
(1) if Acontains least upper bound of any subset of Awhenever it exists in L, and
(i) if Acontains greatest lower bound of any subset of Awhenever it exists in L.

Let us further say that an equivalence relation 6 is closed in (L, V,A), if each equivalence class of 0 is a closed subset of L. A
poset is a directed set if any two elements have an upper bound. A poset is an inversely directed set if any two elements have a
lower bound. Different books follow different terminologies.

Definition 2.1: Let (D, <) be a directed set. Afamily {fij : Xj —X; : i, j € D,i <jjoffunctionsalong witha family (Xj)jep ofsetsis
called an inverse system, iffori < j < kin D, we have fij J fjk = fik' The inverse limit of this inverse system is the subset {(X)xep

€llkep X fij(x;)=x;, whenever i<j in D} of the Cartesian product Mep X«
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Definition 2.2: Let (D, <) be an inversely directed set. Afamily{fj : Xj - Xi :i, j € D,i < j}of functions along with a family
(Xi)iep of sets is again called an inverse system, iffor i < j < kin D, we have fj « fix = fix. The direct limit of this inverse system

is the subset {(xi)kep:ITkepXi: fij(xj)= xi, whenever i< j in D} of the Cartesian product ITio¥ Let us define the direct co finite limit

: ' = X i <j<Kki ) ! , .,
as {(Xk)keD €k Xk. there is a k € D such that fij(xj) X, wheneveri < j <kinD} Let us define an equivalence relation ‘~

on this direct co finite limit by (xk )xep~ (Y« )xep if there is ak € D such that xi = yi for i <k’ Then the direct co finite limit is defined
as the collection of all equivalence classes. Let us recall that the produet on  ITi.pX; for a given collection of lattices (X;, <i) or (X,

Vi, A), i €D, is defined by the relation (%, )ep < (Vi )ep if and only if xj < yj, VieD. Note that the ‘join’ in the product lattice

satisfies the relation(x,),cp V (Vi Jiep = (X V¥, )ep » and the meet in the product lattice satisfies the relation (X )yp A (Vi wep =
(X AYidke:

3. FUNDAMENTAL LEMMAS

Lemma 3.1: L et us assume further in definition 2.1 that each Xi is a lattice (Xi, <i) or (Xi, Vi, Ai). Let each fij be a lattice
homomorphism. Thenthe inverse limitis a sub lattice of the product lattice

HieD Xi.

Proof: Note that, for given (xk)keD, (Vk)keD in the inverse limit, we have fjj(xj Vij) = Xj Vj yj, wheneveri < jin D so that
(xK)keDV(YK)keD is in the inverse limit. Similarly the inverse limit is also closed under ‘meet.

Lemma 3.2: Let us assume further in definition 2.2 that each Xi is a lattice (Xi, <i) or (Xi, Vi, Ai). Let each fi be a lattice

homomorphism. Then the direct limitis a sub lattice of the product lattice IT;.p Xi, and the direct co finite limit is also a sub lattice of
the product lattice.

Proof: Itis possibleasin the proof of the lemma 3.1 to prove that the directlimitis a sub lattice of the product lattice. Let (xk)keD and

(yk)kED be in the direct co finite limit. Since D is inversely directed, there is a keD such that fij(xj) = xi and fjj(yj) = yi,

wheneveri < j <kin D. In this case, we have, fjj(xj Vj yj) = xj Vi yiand fjj(xj Aj yj) = xi Aj yj, wheneveri < j < kin D. Thus
(xk)keD V (yk)keD and (xk)keD A(Yk)keD are in the direct co finite limit. This completes the proof.

Lemma 3.3: LetD,Xi,and fij be as in the statement of lemma 3.2. Consider the equivalence relatioin * ~' given in the definition
2.2. Then‘ ~’ is a congruence relation so that direct quotientlimitbecomesa lattice.

Proof: Suppose (Xk)keD ~ (yk)keD in the direct co finite limit and (Zk)keD be in thedirect co finite limit. Then there is a k in
the inversely directed set D such thatxi = yi fori < kin D. Then xivizi = yi vizi and xi Al zi = yi Al zi fori < kinD. This

proves that (xk)kED v (zk)kED ~(yk)kED v (zk)kED and (xk)kED A (zk)kED ~ (yk)kED A (zk)kED,
This completes the proof.
4. MAIN THEOREMS

Let (X, v,A) be a given lattice with a collection of congruence relations (6i)iep, and let ((Xi, Vi, Ai))ieo be the collection of lattices Xi
=X/0i. Toeachi € D, let Ti : X — Xi be the quotient mapping which is a surjective lattice homomorphism. To each i € D, the partition
Pi = {T¥ai) : & € Xi}corresponds to the congruence relation 6;. Let us consider the usual (refinement) order relation in the complete
lattice of all partitions on X .Let Aj.p 6i and v;.p 6i denote the congruence relations corresponding to infimum and supremum of
the partitions (P;)io0f (6)ico respectively. Let us follow theseinotations in the next two theorems 4.1 and 4.2.

Theorem 4.1: Let D be a directed set such that 8 <n6i, whenever i < j in D.Let fij : Xj — Xi be the natural lattice
homomorphism such that fij * Tj = Ti, wheneveri <% in D. Let us further assume that X is complete and each 6i is a closed

congruence relation. Then the lattice of inverse limit discussed in lemma 311s lattice isomorphic with X/ Airp6j. Moreover Aip 6j

is a closed relation. 1€D
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Proof: The hypotheses of lemma 3.1 are satisfied and hence the inverse limit lattice exists. Let (Y, v, A) be the inverse limit. Define
T: X = Yby T(X) = (Ti(x))ien, ¥ xeX. Then, by definitions, T is a lattice homomorphismthat maps X into Y. L€t (x,) yep€ Y < Ikep
X« Then miep T(x) is non empty, because T7i(x)> T'lj(xj) ,whenever i<j in the directed set D, and because X is complete and each 6;
is a closed congruence relation. Infact, inf..p Supi yi is @ member of this intersection, when yieT'l(xi). Also if zenyep T'lk(xk), then
Ti(z)=x;, VieD. Thus T is surjective. If xe AN(Nien T k(%)) and yen(nieo T (X)) for two distinct equivalence' classes A and B for the
equivalence relation Ai.p 6;, then there at least one k in D such that x=y (mod 6y). Thus Ty(X)=T(y), whereas Ty(X)=x,keD, then we find
that A=ryp T (%) Thus each member of the collection of all equivalence classes corresponding to A;.p 6; is mapped by T onto a unique
member of Y. This proves the theorem, because My.p T () is a closed subset of X, for each xeX.

If the additional conditions that X is complete and each 6; is closed are relaxed, then, X/ajp 6; can be realized as a sub lattice of the
inverse limit induced by (X;) and (f;). This observation follows from the previous proof.

Theorem 4.2: Let D be an inversely directed set such that 6;<6;, whenever i<j in D. Let f;:X;—X; be the natural lattice homomorphism
such that f;°T;=T;, whenever i<j in D. Then the lattice of direct quotient limit discussed in lemma 3.3 is lattice isomorphic with X/vicp 6;

Proof: The hypotheses of lemma 3.3 are satisfied and hence the direct limit lattice and the direct quotient limit lattice exist. LetY and Z
denote the direct co finite limit and the direct quotient limit respectively, and let us also follow the notations used in lemma 3.2 and lemma
3.3. Define T: XY by T(X)=(Ti(X))icp, VXeX. Define S:Y—Z by S((x)ken)= [(Xken], the equivalence class defined by (X )kep
corresponding to the relation ‘~’, V(x)kep€Y. Then by definitions T and S are lattice homomorphisms. Let [(X;)icp]€Z, when (X)icpeY
Then there is an element xe X and there is a kye D such that T;(x)=x;, for i<k, in D. If (y;)icp € YN[(Xi)iep]- Then there is a k<k, in D such
that yi=x, Vi<k in D, and hence to any zeT7(xJ), we have (S°T)(2)=[(X)icol=[(Vi)ico]. This, of course, verifies that xe(S°T)
1[(xi)ieD]gmkeDuigk, iEDT'li(xi). In particular S°T: X—Z is surjective. The remaining part of this paragraph is written to record additional
information that is not required for proof. If ye "ycpUic ied T'li(xi), then yeuiek,T'li(xi), VkeD. Thus, for every keD there isak,<kin D
such that k, <k, and Ti(y)=x=Ti(x) for &k ,, because T™(x)cT"i(x), whenever £j<k , in D. Thus ye(S°T) [(%)ico]- SO, we have an
additional information that (S°T)'1[(xi)ieD]: MkeDVick T'li(xi). Now let x, y belong to an equivalence class defined by vi.p 6;, Then there
are 0iy, 0i,..., Biy with i; D and there are points Xy,X,...,Xp1 in X such that x=x;(mod 6;), X;=xz(mod 8,), X;=X3(mod 65),... X.;=Xy.1(mod
05.1) Xn.1=y(mod 6;,) (see the proof of theorem3.9 in [1]). Find keD such that k<ij, for j=1,2,...,n. Then x=y (mod 6y), and hence (S°T)(x)=(
(S°T)(y). On the other hand if (S°T)(X)=( (S°T)(y), then there is a keD such that x=y(mod 6y) and hence x=y(mod vi.p 6;). So (S°T)
'[(x)ico] is precisely one equivalence class defined by vi.p 6; and every equivalence class defined by vi.p 6; should be of the form (S°T)
[(x)ico]. This completes the proof of the theorem.
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