A NOTE ON PRE-OPEN SETS

V. V. S. RAMACHANDRAM*

ASSOCIATE PROFESSOR, B. V. C. COLLEGE OF ENGINEERING, RAJAHMUNDRY

*E-mail: vvsrch@yahoo.com

(Received on: 08-08-11; Accepted on: 17-08-11)

ABSTRACT

The aim of this paper is to give some results concerning Pre-open sets. We also obtained a necessary and sufficient condition for a topological space to be a $Pre-T_1$ space.

Keywords: Pre-open set, Pre-closed set, dense set, Closure of a set, Interior of a set.

AMS Subject Classification: 54 A 05, 54 A 10.

INTRODUCTION

The term 'pre-open set' was first used by A. S. Mashhour, M. E. Abd El-Monsef and S.N. El- Deeb In this paper we want to introduce and investigate a necessary and sufficient condition for a topological space to be a $Pre-T_1$ space.

Throughout this paper X, Y, Z will denote topological spaces. Let A be a subset of X. We will denote the closure of A by cl (A) and Interior of A by Int (A).

PRELIMINARIES

Def 1.1: A subset A of X is pre-open if $A \subseteq Int(cl(A))$.

Def 1.2: A subset A of X is dense if cl(A) = X.

Def 1.3: If A and B are subsets of X then A is dense in B if $cl(A) \supseteq B$.

Def 1.4: A topological space X is a Pre-T₁ space if for each pair of distinct elements $x, y \in X \exists$ two pre-open sets A and B such that $x \in A$, $y \notin A$ and $y \in B$, $x \notin B$.

Def 1.5: The complement of a pre-open set is a pre-closed set.

WE START WITH THE FOLLOWING RESULT:

Result 1.6: If A is dense in X then A is a pre-open set.

Proof: Given that **A** is dense in X

 \Rightarrow cl(A) = X

Corresponding author: V. V. S. RAMACHANDRAM, *E-mail: vvsrch@yahoo.com

V. V. S. RAMACHANDRAM**/A NOTE ON PRE-OPEN SETS / RJPA- 1(5), August-2011, Page: 132-134
$$\Rightarrow Int(cl(A)) = X$$
$$\Rightarrow A \subseteq Int(cl(A))$$

Hence A is a pre-open set.

Remark: A pre-open set need not be dense in X.

Example 1.7:
$$X = \{a, b, c\}$$
 and $T = \{\emptyset, X, \{a\}, \{b, c\}\}$
Take the subset $A = \{b\}$. Then $cl(A) = \{b, c\}$ and $Int(cl(A)) = \{b, c\}$

Hence A is a pre-open set. But A is not dense in X.

Result 1.8: If A is a subset of an open set B in a topological space X such that $A \subseteq B \subseteq cl(A)$ then A is a pre-open set in X.

Proof: Given B is an open set in X so that, B = Int(B).

Now,
$$A \subseteq B \subseteq cl(A)$$

 $\Rightarrow Int(A) \subseteq Int(B) \subseteq Int(cl(A))$
 $\Rightarrow Int(A) \subseteq B \subseteq Int(cl(A))$
 $\Rightarrow A \subseteq Int(cl(A))$

Hence A is a pre-open set in X.

Theorem 1.9: Arbitrary union of Pre-open sets is a Pre-open set.

Proof: Trivial

Theorem 2: A topological space X is a pre- T_1 space if and only if $\{x\}$ is a pre-closed set for each $x \in X$.

Proof: Suppose X is a pre- T_1 space. Let $x \in X$.

To prove that $\{x\}$ is a pre-closed set, it is enough to prove that $\{x\}^1$ is a pre-open set.

If
$$\{x\}^1 = \emptyset$$
 then it is clear.

Let $y \in \{x\}' \Rightarrow y \neq x \Rightarrow \exists$ two pre-open sets N_y, N_x such that $x \notin N_y$ and $y \notin N_x$.

If we do the same for each element 'y' in X, we get a family of pre-open sets such that $x \notin N_y$ and $y \notin N_x$.

Clearly
$$\{x\}' = \bigcup_{y \neq x} \{ N_y \}$$

By Theorem (1.9), we get that $\{x\}^1$ is a pre-open set.

Hence $\{x\}$ is a pre-closed set.

Converse: Suppose that $\{x\}$ is a pre-closed set for each $x \in X$. Let $x, y \in X$ and $x \neq y$. By assumption $\{x\}$ and $\{y\}$ are pre-closed sets.

$$\Rightarrow \{x\}^1$$
 and $\{y\}^1$ are pre-open sets in X.

As
$$y \neq x$$
 we get that $x \in \{y\}^1$ and $y \in \{x\}^1$

Hence X is a pre- T_1 space.

V. V. S. RAMACHANDRAM**/ A NOTE ON PRE-OPEN SETS / RJPA- 1(5), August-2011, Page: 132-134

REFERENCES:

- [1] A. P. DhanaBalan & K.Chandrasekhara Rao: "A note on θ -open sets", The Mathematics Education, Vol.XLI, No.1, March 2007.
- [2] A. P. Dhana Balan & K. Chandrasekhara Rao: "On p-Compact spaces", The Mathematics Education, Vol. XL, No.4, December 2006.
- [3] "On pre-continuous and weak pre-continuous mappings": Proc. Math. Phys. Soc. Egypt, 53 (1982), 47–53).

ACKNOWLEDGEMENT:

I thank my guide **Dr. K. H. S. Subrahmanyam**, Rtd. Principal, for his extended cooperation throughout the preparation of this paper.
