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ABSTRACT 
In this paper a new class of functions called minimal weakly continuous and maximal weakly continuous functions are 
introduced  and investigated and during this process some properties of the new concepts have been studied. 
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1. INTRODUCTION 
 
In the year 2001 and 2003, F.Nakaoka and N.oda [1] [2] [3] introduced and studied minimal open [resp. Minimal 
closed] sets which are subclass of open [resp.closed sets]. The family of all minimal open [minimal closed] in a 
topological space X is denoted by mio(X) [mic(X)]. Similarly the family of all maximal open [maximal closed] sets in a 
topological space X is denoted by MaO(X)[MaC(X)].The complements of minimal open sets and maximal open sets are 
called maximal closed sets and minimal closed sets respectively. In the year 2000, M.Sheik john [4] introduced and 
studied  weakly closed sets and  weakly open sets in topological space. In the year 2008 B.M.Ittanagi [5] introduced 
and studied minimal open sets and maps in topological spaces. In the year 2014 R.S.Wali and Vivekananda Dembre[6] 
[7] introduced and studied minimal weakly open sets and maximal weakly closed sets and maximal weakly open sets 
and minimal weakly closed sets in topological spaces. 
 
1.1 Definition [1]: A proper non-empty open subset U of a topological space X is said to be minimal open set if any 
open set which is contained in U is ∅  or U.    
 
1.2 Definition [2]:  A proper non-empty open subset U of a topological space X is said to be maximal open set if any 
open set which is contained in U is  X  or U.  
 
1.3 Definition [3]: A proper non-empty closed subset F of a topological space X is said to be minimal closed set if any 
closed set which is contained in F is ∅ or F & A proper non-empty closed subset F of a topological space X is said to be 
maximal closed set if any closed  set which is contained in F is X  or F. 
 
1.4 Definition [4]: A subset A of (X, 𝜏𝜏) is called weakly closed set if Cl(A) ⊆ U whenever A ⊆ U and U is semi-open    
 in X  and A subset A in (X, 𝜏𝜏) is called weakly open set in X if Ac is weakly closed set in X. 
 
1.5 Definition [4]: Let X and Y be the topological spaces. A map f : X         Y is  called Weakly continuous function  if  
for every weakly open set  N in Y, f  - 1 (N) is an open set in X. 
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1.6 Definition [5]: Let X and Y be the topological spaces. A map f : X         Y   is  called 

(i) Minimal continuous function  if for every minimal open set N in Y,  f  - 1(N) is an open set in X. 
(ii)Maximal continuous function if for every maximal open set N in Y,  f  - 1(N) is an open set in X. 

 
1.7 Definition [6]: A proper non-empty  weakly open subset U of X is said to be minimal weakly open set if any 
weakly open set which is contained in U is ∅ or U. 
 
1.8  Definition [7]: A proper non-empty weakly closed subset U of X is said to be maximal weakly open set if any 
weakly open set which is contained in U is X or U. 
 
2. MINIMAL WEAKLY CONTINUOUS FUNCTIONS 
 
2.1 Definition : Let X and Y be topological spaces. A function f: X        Y  is said to be minimal weakly continuous if 
for every minimal weakly open set N in Y, f -1(N) is an open set in X. 
 
2.2 Theorem: Every continuous function is minimal weakly continuous. 
 
Proof: Let f : X      Y  be a continuous  function . Let N be any minimal weakly open set  in Y, since every minimal 
weakly open set is an open set. We have N is an open set in Y. Since f is continuous, f -1(N)  is an open set in 
X.Therefore  f is a minimal weakly continuous. 
 
2.3 Remark:The converse of the above theorem 2.2 need not be true. 
 
2.4 Example: Let X=Y={a,b,c} be with 𝜏𝜏 = {X, 𝜑𝜑, {a}, {a,b}} and 𝜇𝜇 = {Y,  𝜑𝜑, {a},{b},{a,b}}. Let  f : X        Y be 
function defined by f(a) = a, f(b) = a, f(c) = c then f is minimal weakly continuous but not continuous. 
 
2.5 Theorem: Let X and Y be topological spaces. A function f : X         Y is minimal weakly continuous iff the inverse 
image of each maximal weakly closed set in Y is a closed set. 
 
Proof: Assume that f is minimal weakly continuous and let M be any maximal weakly closed set in Y, Y-M is a 
minimal weakly open set in Y. Since f is minimal weakly continuous,  f -1(Y-M) is an open set in X . 
 
But f – 1(Y-M) = X- f – 1(M) is an open set in X.Therefore  f -1(M) is a closed set in X. Conversely,  Suppose f -1(M) is a 
closed set in X for every maximal weakly closed set M in Y. Let N be any minimal weakly open set in Y, then Y-N is a 
maximal weakly closed set in Y, So by hypothesis  f -1(Y-N) = X - f -1(N) is a closed set in X. Therefore  f -1(N) is an 
open set in X. Therefore f is minimal weakly continuous. 
 
2.6 Theorem: Let X and Y be topological spaces then f: X      Y is minimal weakly continuous then f(Cl(M))⊂Cl(f(M)) 
for every maximal weakly closed set M in X. 
 
Proof: Let M be any maximal weakly closed set in X and Cl(M)=M. Now f [Cl(M)] = f(M)⊂Cl(f(M)), for every 
maximal weakly closed set M in X. 
 
2.7 Theorem: Let X and Y be topological spaces then  f :  X        Y is minimal weakly continuous iff  for  any point 
P𝜖𝜖X   and for any minimal weakly open set N in Y containing f (P) there exists an open set M in X such that  P𝜖𝜖M and 
f(M)⊂Ν. 
 
Proof: Let N be any minimal weakly open set in Y containing f(P) for any point  P𝜖𝜖M where M is an open set in X. 
Since f is minimal weakly continuous f  -1(N) is an open set in X. Take M = f -1(N) we have  f(M)⊂Ν. Conversely, Let 
N be any minimal weakly open set in Y by hypothesis there exists an open set M in X, Such that  P𝜖𝜖M, f(P)ϵf(M)⊂Ν ,  
Pϵ f -1(f(M))⊂f -1(N) thus f -1(N) is an open set in X ; therefore f is minimal weakly continuous. 
 
2.8 Theorem: Let X and Y be topological spaces and let A be a non-empty subset of  X. If  f : X        Y  is  minimal 
weakly continuous then the restriction function fA : A       Y is minimal weakly continuous where A has the relative 
topology. 
 
Proof: Let A be a non-empty subset of a topological space X and Let N be any minimal weakly open set in Y. Since f 
is minimal weakly continuous,  f -1(N) is an open set in X. By definition of relative topology fA

-1(N) = A ∩ f -1(N). 
Therefore A∩ f -1(N) is an open set in A ; therefore fA is minimal weakly continuous. 
 
2.9 Remark: The composition of minimal weakly continuous need not be a minimal weakly continuous. 
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2.10 Example:   Let  X = Y = Z={a,b,c} be with 𝜏𝜏 = { X, 𝜑𝜑, {a,b}},   𝜇𝜇 ={ Y, 𝜑𝜑, {a},{b}{a,b}} and  𝜎𝜎 = { Z, 𝜑𝜑,{a}}. 
Let f : (X, 𝜏𝜏)        (Y, 𝜇𝜇) be a function defined by f(a)=c, f(b)=c & f(c)=C and g: (Y, , 𝜇𝜇)        (Z ,𝜎𝜎)  be identity function 
then f and g are minimal weakly continuous but gof : (X, 𝜏𝜏)        (Z,𝜎𝜎) is not minimal weakly continuous where          
gof : (X, 𝜏𝜏)        (Z, 𝜎𝜎) be identity function. 
 
2.11 Remark: If f: X       Y is continuous and g: Y        Z  is minimal weakly continuous then  gof : X       Z  is minimal 
weakly continuous. 
 
3. MAXIMAL WEAKLY CONTINUOUS FUNCTIONS 
 
3.1 Definition : Let X and Y be topological spaces. A function f :  X          Y  is said to be maximal weakly continuous 
if for every maximal weakly open set M in Y , f -1(M) is an open set in X. 
 
3.2 Theorem: Every continuous function is maximal weakly continuous. 
 
Proof: Let f : X       Y  be a continuous  function . Let M be any maximal weakly open set is in Y,  since every maximal 
weakly open set is an open set .We have M is an open set in Y. Since f is continuous, f -1(M)  is an open set in 
X.Therefore  f is a maximal weakly continuous. 
 
3.3 Remark:The converse of the above theorem 3.2 need not be true. 
 
3.4 Example: Let X =Y ={a,b,c}  with 𝜏𝜏 = {X, 𝜑𝜑, {a,b}} and 𝜇𝜇 = {Y,  𝜑𝜑, {a},{b},{a,b} }. Let  f : X       Y  be an 
identity function then f is maximal weakly continuous but not continuous. 
 
3.5 Remark: Maximal weakly continuous and minimal weakly continuous are independent. 
 
3.6 Example: Let X=Y={a,b,c}  with 𝜏𝜏1 = {X, 𝜑𝜑,{a},{b},{a,b}} and  𝜇𝜇1 = {Y,  𝜑𝜑, {a},{a,b}}.  
 
Let f : (X, 𝜏𝜏1)       (Y, 𝜇𝜇1)  be an identity function then f is minimal weakly continuous but not maximal weakly 
continuous. Let  g : (X, 𝜏𝜏2)         (Y, 𝜇𝜇2) be an identity function then g is maximal weakly continuous but not minimal 
weakly continuous where  X = Y ={a,b,c}  with 𝜏𝜏2 = {X, 𝜑𝜑,{a,b}} and  𝜇𝜇2 = {Y,  𝜑𝜑, {a},{b},{a,b}}. 
 
3.7 Theorem: Let X and Y be topological spaces. A function f : X          Y is maximal weakly continuous iff the 
inverse image of each minimal weakly closed set in Y is a closed set in X. 
 
Proof: Assume that f is maximal weakly continuous and let N be any minimal weakly closed set in Y, Y-N is a 
maximal weakly open set in Y. Since f is maximal weakly continuous,  f -1(Y-N) is an open set in X .  
 
But f – 1(Y-N) = X- f – 1(N) is an open set in X.Therefore  f -1(N) is a closed set in X. Conversely, Suppose f -1(N) is a 
closed set in X for every minimal weakly closed set N in Y. Let M be any maximal weakly open set in Y, then Y-M is a 
minimal weakly closed set in Y, So by hypothesis  f -1(Y-M) = X – f -1(M) is a closed set in X. Therefore  f -1(M) is an 
open set in X. Therefore f is maximal weakly continuous. 
 
3.8 Theorem: Let X and Y be topological spaces. A function f : X     Y is maximal weakly continuous then 
f[Cl(N)]⊂Cl(f(N)) for every minimal weakly closed set N in X. 
 
Proof: Let N be any minimal weakly closed set in X and Cl(N)=N. Now f(Cl(N))=f(N), Now we know that 
f(Cl(N))=f(N)⊂Cl(f(N)), for every minimal weakly closed set N in X. 
 
3.9 Theorem: Let X and Y be topological spaces then  f : X        Y   is maximal weakly continuous iff  for  any point 
P𝜖𝜖X   and for any maximal weakly open set M in Y containing f(P) there exists an open set N in X such that  P𝜖𝜖N and 
f(N)⊂Μ. 
 
Proof: Let M be any maximal weakly open set in Y containing f(P) for any point   P𝜖𝜖N, where N is an open set in X. 
Take N = f -1(M) we have  f(N)⊂Μ. Conversely, Let M be any maximal weakly open set in Y; by hypothesis there 
exists an open set N in X, Such that  P𝜖𝜖N, f(P)ϵf(N)⊂Μ ; thus f -1(M) is an open set in X ; therefore f is maximal 
weakly continuous. 
 
3.10 Theorem: Let X and Y be topological spaces and  A be a non-empty subset of  X.  If  f : X          Y   is  maximal 
weakly continuous then the restriction function fA : A        Y   is maximal weakly continuous where A has the relative 
topology. 
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Proof: Let A be a non-empty subset of a topological space X and Let M be any maximal weakly open set in Y. Since f 
is maximal weakly continuous,  f -1(M) is an open set in X. By definition of relative topology fA

-1(M) = A ∩ f -1(M). 
Therefore A∩ f -1(M) is an open set in A, Therefore fA is maximal weakly continuous. 
 
3.11 Remark: The composition of maximal weakly continuous need not be a maximal weakly continuous. 
 
3.12 Example:  Let  X = Y = Z={a,b,c}  be with 𝜏𝜏 = {X, 𝜑𝜑, {a}},   𝜇𝜇 ={Y, 𝜑𝜑, {a},{b}{a,b}} , 𝜎𝜎 = {Z, 𝜑𝜑,{a,b}}  
Let f :(X, 𝜏𝜏)        (Y, 𝜇𝜇) be a function defined by f(a) = c, f(b) = c & f(c) = c and g : (Y, 𝜇𝜇)        (Z, 𝜎𝜎 )  be identity 
function then f and g are maximal weakly continuous  but gof : (X, 𝜏𝜏)         (Z , 𝜎𝜎)  is not maximal weakly continuous 
where gof : (X, 𝜏𝜏)         (Z, 𝜎𝜎)  be identity function. 
 
3.13 Remark: If   f : X        Y is continuous and g :Y         Z   is maximal weakly continuous then gof: X        Z   is 
maximal weakly continuous.  
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