A FIXED POINT THEOREM IN G-METRIC SPACE

Smita Nair and Shalu Saxena*
Sri Sathy Sai College for Women Bhopal, (M.P.), India.

(Received On: 31-10-14; Revised \& Accepted On: 14-11-14)

Abstract

In this paper we prove a common fixed theorem in G-metric space using pairs of weakly compatible mappings.

Key Words: Complete G-metric space, weakly compatible mapping,

INTRODUCTION

Banach contraction principle has been generalized in various spaces through different mappings. It has been a centre of rigorous research. After Gahler gave the concept of 2-metric space Dhage [2, 3] introduced the concept of D-metric space, but most of the results in D-metric space were proven invalid by Mustafa and Sims [14, 15]. They further introduced the concept of G-metric. Here we prove a common fixed point theorem in G-metric space, for six pairs of weakly compatible mappings.

DEFINITIONS AND PRELIMINARIES

We here begin with some definitions and results for G- metric spaces that will be used in the following sections.
Definition 2.1: [15] Let X be a nonempty set. and let G; $\mathrm{X} \times \mathrm{X} \times \mathrm{X}--->\mathrm{R}^{+}$be a function satisfying the following axioms
$\left(\mathrm{G}_{1}\right) \mathrm{G}(\mathrm{x}, \mathrm{y}, \mathrm{z})=0$ if $\mathrm{x}=\mathrm{y}=\mathrm{z}$
$\left(G_{2}\right) G(x, x, y)>0$, for all $x, y \varepsilon X$ with $x \neq y$
$\left(G_{3}\right) G(x, x, y) \leq G(x, y, z)$ for all $x, y, z \varepsilon X$ with $z \neq y$.
$\left(G_{4}\right) G(x, y, z)=G(x, z, y)=G(y, z, x)=\ldots$. (Symmetry in all three variables)
$\left(G_{5}\right) G(x, y, z) \leq G(x, a, a)+G(a, y, z)$, for all $x, y, z, a \varepsilon x$ (rectangle inequality)
Then the function G is called a generalized metric or more specifically a G - metric on X, and the pair (X, G) is called a G - metric space .

Definition 2.2: [15] Let (X, G) be a G - metric space, let $\left\{\mathrm{X}_{\mathrm{n}}\right\}$ be a sequence of points of X , we say that $\left\{\mathrm{X}_{\mathrm{n}}\right\}$ converges to a point x in X
lim
if $\lim _{n, m \rightarrow \infty} G\left(x, x_{n}, x_{m}\right)=0$

In other words for $\mathrm{e} \varepsilon>0$ there exists $\mathrm{n}_{0} \varepsilon \mathrm{~N}$ such that $\mathrm{G}\left(\mathrm{x}, \mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{m}}\right)<\varepsilon$ for all $\mathrm{n}, \mathrm{m} \geq \mathrm{n}_{0}$ Then x is called the limit of sequence $\left\{\mathrm{X}_{\mathrm{n}}\right\}$.

Definition 2.3: [15] Let (X, G) be a G- metric space, a sequence $\left\{x_{n},\right\}$ is called G - Cauchy sequence if for given $\varepsilon>0$, there is $n_{0} \varepsilon N$ such that
$\mathrm{G}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{m}}, \mathrm{x}_{\mathrm{e}}\right)<\varepsilon$ for all $\mathrm{n}, \mathrm{m}, l \geq \mathrm{n}_{\mathrm{o}}$ that is if. $\mathrm{G}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{m}}, \mathrm{x}_{\mathrm{e}}\right) \rightarrow 0$ as $\mathrm{n}, \mathrm{m}, l \rightarrow \infty$

[^0]Preposition 2.5: [15] Let (X, G) be a G-metric space, Then, the following are equivalent
(i) $\left\{x_{n}\right\}$ is G- convergent to x
(ii) G ($\left.\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}}, \mathrm{x}\right) \rightarrow 0$, as $\mathrm{n} \rightarrow \infty$
(iii) $G\left(x_{n}, x, x,\right) \rightarrow 0$, as $n \rightarrow \infty$
(iv) $G\left(x_{m}, x_{n}, x\right) \rightarrow 0$ as $n, m \rightarrow \infty$

Preposition 2.6: [15] In a G-metric space (X, G) the following are equivalent
(i) The sequence $\left\{\mathrm{x}_{\mathrm{n}}\right\}$ is G- Cauchy
(ii) For every $\varepsilon>0$, there exists $n_{0} \varepsilon N$ such that $G\left(x_{n}, x_{m}, x_{m}\right)<\varepsilon$ for all $n, m \geq n_{0}$.

Definition 2.7: [16] Let ϕ denote the set of alternating distance functions $\phi:[0, \phi[\rightarrow[0, \infty$ [which satisfies following conditions
(i) ϕ is strictly increasing
(ii) ϕ is upper semi continuous from the right.
(iii) $\sum_{n=0}^{\infty} \phi(t)<\infty$ for all $t>0$
(iv) $\phi(t)=0 \Leftrightarrow t=0$

MAIN RESULT

Let $\mathrm{f}, \mathrm{g}, \mathrm{h}, \mathrm{r}, \mathrm{s}$, and t be self mappings of a complete G -metric space (X, G) and
(i) $f(X) \subseteq t(X), g(X) \subseteq s(X), h(X) \subseteq r(X)$ and $f(X)$ or $g(X)$ or $h(X)$ is a closed subset of X.
(ii) $G(f x, g y, h z) \leq \phi\{\max \{G(g y, f x, r x), G(h z, g y, t y), G(f x, s z, h z), \alpha G(f x, r x, g y)+\gamma G(s z, f x, r x), \beta G$ (gy, ty, hz) $+\delta \mathrm{G}(\mathrm{fx}, \mathrm{gy}, \mathrm{ty})\}\}$ where $\alpha, \beta, \gamma, \delta, \geq 0, \alpha+\beta+\gamma+\delta<1 / 2$
(iii) $\phi: \mathrm{R}^{+} \rightarrow \mathrm{R}^{+}$is increasing function such that ϕ (a) $<\mathrm{a}$ for all $\mathrm{a}>0$ and $\sum \phi$ (a) $<\infty$
(iv) The pairs (f, r), (g, t) and (h, s) are weakly compatible pairs of mappings. Then the mappings $\mathrm{f}, \mathrm{g}, \mathrm{h}, \mathrm{r}, \mathrm{s}$ and t have a unique common fixed point.

Proof: Let $x_{0} \in X$ be an arbitrary point. Then from (i) there exists $x_{1}, x_{2}, x_{3} \in X$ such that $f x_{0}=t x_{1}=y_{0}, g x_{1}=s x_{2}=y_{1}$ and $\mathrm{hx}_{2}=\mathrm{rx}_{3}=\mathrm{y}_{2}$ inductively we define a sequence $\left\{\mathrm{y}_{\mathrm{n}}\right\}$ in X such that $\mathrm{fx}_{3 \mathrm{n}}=\mathrm{tx}_{3 \mathrm{n}+1}=\mathrm{y}_{3 \mathrm{n}}, \mathrm{gx}_{3 \mathrm{n}+1}=s \mathrm{x}_{3 \mathrm{n}+2+}=\mathrm{y}_{3 \mathrm{n}+1}$ and $h x_{3 n+2}=r x_{3 n+3}=y_{3 n+2}$ for $n=0,1,2 \ldots$.

We now prove that $\left\{y_{n}\right\}$ is a Cauchy sequence and for this we define
$d_{m}=G\left(y_{m}, y_{m+1}, y_{m+2}\right)$. so we have.
$d_{3 n}=G\left(y_{3 n}, y_{3 n+1}, y_{3 n+2}\right)$
$=G\left(\mathrm{fx}_{3 \mathrm{n}}, \mathrm{gx}_{3 \mathrm{n}+1}, \mathrm{hx}_{3 \mathrm{n}+2}\right)$
$\leq \phi\left\{\max \left\{G\left(\mathrm{gx}_{3 n+1}, \mathrm{fx}_{3 \mathrm{n}}, \mathrm{rx}_{3 \mathrm{n}}\right), \mathrm{G}\left(\mathrm{hx}_{3 \mathrm{n}+2}, \mathrm{gx}_{3 \mathrm{n}+1}, \mathrm{tx}_{3 \mathrm{n}+1}\right), \mathrm{G}\left(\mathrm{fx}_{3 \mathrm{n}}, \mathrm{sx}_{3 \mathrm{n}+2}, \mathrm{hx} \mathrm{x}_{3 \mathrm{n}+2}\right)\right.\right.$,
$\left.\left.\alpha G\left(f^{n n}, r x_{3 n}, g x_{3 n+1}\right),+\gamma G\left(s x_{3 n+2}, f x_{3 n}, r x_{3 n}\right), \beta G\left(g x_{3 n+1}, t x_{3 n+1}, h x_{3 n+2}\right)+\delta G\left(f_{3 n}, g x_{3 n+1}, t x_{3 n+1}\right)\right\}\right\}$
$\leq \phi\left\{\max \left\{G\left(y_{3 n+1}, y_{3 n}, y_{3 n-1}\right), G\left(y_{3 n+2}, y_{3 n+1}, y_{3 n}\right), G\left(y_{3 n}, y_{3 n+1}, y_{3 n+2}\right), \alpha G\left(y_{3 n}, y_{3 n-1}, y_{3 n+1}\right)\right.\right.$,
$\left.\left.+\gamma G\left(y_{3 n+1}, y_{3 n}, y_{3 n-1}\right), \beta G\left(y_{3 n+1}, y_{3 n}, y_{3 n+2}\right)+\delta G\left(y_{3 n}, y_{3 n+1}, y_{3 n}\right)\right\}\right\}$
$\leq \phi\left\{\max \left\{\mathrm{d}_{3 \mathrm{n}-1}, \mathrm{~d}_{3 \mathrm{n}}, \mathrm{d}_{3 \mathrm{n}}, \alpha \mathrm{d}_{3 \mathrm{n}-1}+\gamma \mathrm{d}_{3 \mathrm{n}-1,1} \beta \mathrm{~d}_{3 \mathrm{n}}+\delta \mathrm{d}_{3 \mathrm{n}}\right\}\right.$ as $\mathrm{G}(\mathrm{a}, \mathrm{a}, \mathrm{x}) \leq \mathrm{G}(\mathrm{x}, \mathrm{y}, \mathrm{z})$
$\leq \phi\left\{\max \left\{\mathrm{d}_{3 n-1},(\gamma+\alpha) \mathrm{d}_{3 \mathrm{n}-1},(\beta+\delta) \mathrm{d}_{3 \mathrm{n}}\right\}\right.$
From the above inequality we have following cases
Case-I: If $\max =\mathrm{d}_{3 n-1}$ then from the inequality

$$
\mathrm{d}_{3 \mathrm{n}} \leq \phi\left\{\mathrm{d}_{3 \mathrm{n}-1}\right\} \leq \mathrm{d}_{3 \mathrm{n}-1} \text { as } \phi(\mathrm{a})<\text { a for all } \mathrm{a}>0 .
$$

Case-II: $\mathrm{d}_{3 \mathrm{n}} \leq \phi\left\{\mathrm{d}_{3 \mathrm{n}}\right\}<\mathrm{d}_{3 \mathrm{n}}$ which is a contradiction.
Case-III: If max $=(\alpha+\gamma) d_{3 n-1}$ then from the inequality

$$
\begin{aligned}
& \mathrm{d}_{3 \mathrm{n}} \leq \phi\left\{(\alpha+\gamma) \mathrm{d}_{3 \mathrm{n}-1}\right\}<(\alpha+\gamma) \mathrm{d}_{3 \mathrm{n}-1} \\
& \mathrm{~d}_{3 \mathrm{n}}<\mathrm{d}_{3 \mathrm{n}-1}
\end{aligned}
$$

Case-IV: If max $=(\beta+\delta) d_{3 n}$, then from the inequality we have
$\mathrm{d}_{3 \mathrm{n}} \leq \phi\left\{(\beta+\delta) \mathrm{d}_{3 \mathrm{n}}\right\}<(\beta+\delta) \mathrm{d}_{3 \mathrm{n}}$
$d_{3 n}<d_{3 n}$ which is a contradiction. Hence in either case we infer that $d_{3 n} \leq d_{3 n-1}$.
Consider,

We have following cases
Case-I: max $=\mathrm{d}_{3 \mathrm{n}}$ then from above inequality $\mathrm{d}_{3 \mathrm{n}+1} \leq \phi\left(\mathrm{d}_{3 \mathrm{n}}\right)<\mathrm{d}_{3 \mathrm{n}}$ as $\phi(\mathrm{a})<$ a for all $\mathrm{a}>0$
Case-II: $\max =d_{3 n+1}$ then we have,$d_{3 n+1} \leq \phi\left(d_{3 n+1}\right)<d_{3 n+1}$ which is a contradiction.
Case-III: $\max =(\alpha+\gamma) \mathrm{d}_{3 \mathrm{n}}$ then we have .
$\mathrm{d}_{3 \mathrm{n}+1} \leq \phi\left\{(\alpha+\gamma) \mathrm{d}_{3 \mathrm{n}}\right\}<(\alpha+\gamma) \mathrm{d}_{3 \mathrm{n}}$, as $\alpha+\beta+\gamma+\delta<1 / 2$ we have $\mathrm{d}_{3 \mathrm{n}+1} \leq \mathrm{d}_{3 \mathrm{n}}$
Case-IV: $\max =(\beta+\delta) \mathrm{d}_{3 \mathrm{n}+1}$ then from the inequality.
$\left.d_{3 n+1} \leq \phi(\beta+\delta) d_{3 n+1}\right\}<(\beta+\delta) d_{3 n+1}$, as $\alpha+\beta+\gamma+\delta<1 / 2, d_{3 n+1}<d_{3 n+1}$ is a contradiction
Hence in either case we have $\mathrm{d}_{3 \mathrm{n}+1} \leq \mathrm{d}_{3 \mathrm{n}}$ Now consider.
$d_{3 n+2}=G\left(y_{3 n+2}, y_{3 n+3}, y_{3 n+4}\right)$

$$
\leq G\left(f x_{3 n+2}, g x_{3 n+3}, h x_{3 n+4}\right)
$$

$$
\leq \phi\left\{\operatorname { m a x } \left\{G\left(g_{3 n+3}, f x_{3 n+2}, r x_{3 n+2}\right), G\left(h x_{3 n+4}, g x_{3 n+3}, t x_{3 n+3}\right), G\left(f x_{3 n+2}, s x_{3 n+4}, h x_{3 n+4}\right),\right.\right.
$$

$$
\left.\left.\alpha G\left(\mathrm{fx}_{3 n+2}, \mathrm{rx}_{3 n+2}, \mathrm{gx}_{3 n+3},\right)+\gamma G\left(\mathrm{sx}_{3 n+4}, \mathrm{fx}_{3 n+2}, \mathrm{rx}_{3 n+2}\right), \beta \mathrm{G}\left(\mathrm{gx}_{3 n+3}, \mathrm{tx}_{3 n+3}, \mathrm{hx}_{3 n+4}\right)+\delta G\left(\mathrm{fx}_{3 n+2}, \mathrm{gx}_{3 n+3}, \mathrm{tx}_{3 n+3}\right)\right\}\right\}
$$

$\leq \phi\left\{\max \left\{G\left(y_{3 n+3}, y_{3 n+2}, y_{3 n+1}\right), G\left(y_{3 n+4}, y_{3 n+3}, y_{3 n+2}\right), G\left(y_{3 n+2}, y_{3 n+3}, y_{3 n+4}\right), \alpha G\left(y_{3 n+2}, y_{3 n+1}, y_{3 n+3}\right)\right.\right.$

$$
\left.\left.+\gamma G\left(y_{3 n+3}, y_{3 n+2}, y_{3 n+1}\right), \beta G\left(y_{3 n+3}, y_{3 n+2}, y_{3 n+4}\right)+\delta G\left(y_{3 n+2}, y_{3 n+3}, y_{3 n+2}\right)\right\}\right\}
$$

$\leq \phi\left\{\max \left\{\mathrm{d}_{3 \mathrm{n}+1}, \mathrm{~d}_{3 \mathrm{n}+2}, \mathrm{~d}_{3 \mathrm{n}+2}, \alpha \mathrm{~d}_{3 \mathrm{n}+1},+\gamma \mathrm{d}_{3 \mathrm{n}+1}, \beta \mathrm{~d}_{3 \mathrm{n}+2}+\delta \mathrm{d}_{3 \mathrm{n}+2}\right\}\right\}$
$\leq \phi\left\{\max \left\{\mathrm{d}_{3 \mathrm{n}+1}, \mathrm{~d}_{3 \mathrm{n}+2},(\alpha+\gamma) \mathrm{d}_{3 \mathrm{n}+1},(\beta+\delta) \mathrm{d}_{3 \mathrm{n}+2}\right\}\right\}$
We have following cases
Case-I: When max $=\mathrm{d}_{3 \mathrm{n}+1}$, then from the inequality we have, $\mathrm{d}_{3 \mathrm{n}+2} \leq \phi\left(\mathrm{d}_{3 \mathrm{n}+1}\right)<\mathrm{d}_{3 \mathrm{n}+1}$
Case-II: max $=d_{3 n+2}$, then $d_{3 n+2} \leq \phi\left(d_{3 n+2}\right)<d_{3 n+2}$, which is a contradiction
Case-III: $\max =(\alpha+\gamma) d_{3 n+1}$ then

$$
\mathrm{d}_{3 n+2} \leq \phi\left\{(\alpha+\delta) d_{3 n+1}\right\}<(\alpha+\delta) d_{3 n+1} \text {, as } \alpha+\beta+\delta+\gamma<1 / 2 \text { we have, } d_{3 n+2} \leq d_{3 n+1}
$$

$$
\begin{aligned}
& d_{3 n+1}=G\left(y_{n+1}, y_{n+2}, y_{n+3},\right) \\
& \leq G\left(\mathrm{fx}_{3 \mathrm{n}+1}, \mathrm{gx}_{3 \mathrm{n}+2}, \mathrm{hx}_{3 \mathrm{n}+3},\right) \\
& \leq \phi\left\{\operatorname { m a x } \left\{G\left(\mathrm{gx}_{3 n+2}, \mathrm{fx}_{3 n+1}, \mathrm{rx}_{3 n+1}\right), \mathrm{G}\left(\mathrm{hx}_{3 n+3}, \mathrm{gx}_{3 n+2}, \mathrm{tx}_{3 n+2}\right), \mathrm{G}\left(\mathrm{fx}_{3 n+1}, \mathrm{sx}_{3 n+3}, h x_{3 n+3}\right),\right.\right. \\
& \left.\left.\alpha G\left(f x_{3 n+1}, r x_{3 n+1}, g x_{3 n+2}\right)+\gamma G\left(s x_{3 n+3}, f x_{3 n+1}, r x_{3 n+1}\right), \beta G\left(g x_{3 n+2}, t x_{3 n+2}, h x_{3 n+3}\right)+\delta G\left(f_{3 n+1}, g x_{3 n+2}, t x_{3 n+2}\right)\right\}\right\} \\
& \leq \phi\left\{\operatorname { m a x } \left\{G\left(y_{3 n+2}, y_{3 n+1}, y_{3 n}\right), G\left(y_{3 n+3}, y_{3 n+2}, y_{3 n+1}\right), G\left(y_{3 n+1}, y_{3 n+2}, y_{3 n+3}\right), \alpha G\left(y_{3 n+1}, y_{3 n}, y_{3 n+2}\right)\right.\right. \\
& \left.\left.+\gamma G\left(y_{3 n+2}, y_{3 n+1}, y_{3 n}\right), \beta G\left(y_{3 n+2}, y_{3 n+1}, y_{3 n+3}\right)+\delta G\left(y_{3 n+1}, y_{3 n+2}, y_{3 n+1}\right)\right\}\right\} \\
& \leq \phi\left\{\max \left\{\mathrm{d}_{3 \mathrm{n}}, \mathrm{~d}_{3 \mathrm{n}+1}, \mathrm{~d}_{3 \mathrm{n}+1}, \alpha \mathrm{~d}_{3 \mathrm{n}},+\gamma \mathrm{d}_{3 \mathrm{n}}, \beta \mathrm{~d}_{3 \mathrm{n}+1+} \delta \mathrm{d}_{3 \mathrm{n}+1}\right\}\right\} \text { as } \mathrm{G}(\mathrm{a}, \mathrm{a}, \mathrm{x}) \leq \mathrm{G}(\mathrm{x}, \mathrm{y}, \mathrm{z}) \\
& \leq \phi\left\{\max \left\{d_{3 n}, d_{3 n+1},(\alpha+\gamma) d_{3 n},(\beta+\delta) d_{3 n+1}\right\}\right.
\end{aligned}
$$

Case-IV: $\max =(\beta+\delta) \mathrm{d}_{3 \mathrm{n}+2}$
$\mathrm{d}_{3 \mathrm{n}+2} \leq \phi\left\{(\beta+\delta) \mathrm{d}_{3 \mathrm{n}+2}\right\}<(\beta+\delta) \mathrm{d}_{3 \mathrm{n}+2}$. Which is a contradiction as $\alpha+\beta+\gamma+\delta<1 / 2$. Hence in either cases $d_{3 n+2} \leq d_{3 n+1}$. From above cases we can say that $d_{n} \leq d_{n-1}$ for every $n \in N$. So, we get $d_{n} \leq \mathrm{qd}_{n-1}$ where $\mathrm{q}=\alpha+\beta+\gamma+\delta$ i.e. $\mathrm{d}_{\mathrm{n}}=\mathrm{G}\left(\mathrm{y}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}+1}, \mathrm{y}_{\mathrm{n}+2}\right) \leq \mathrm{q} G\left(\mathrm{y}_{\mathrm{n}-1}, \mathrm{y}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}+1}\right) \leq \mathrm{q}^{\mathrm{n}} \mathrm{G}\left(\mathrm{y}_{0}, \mathrm{y}_{1}, \mathrm{y}_{2}\right)$.

Also we have $G(x, x, y) \leq G(x, y, z)$, hence we get $G\left(y_{n}, y_{n}, y_{n+1}\right) \leq q^{n} G\left(y_{0}, y_{1}, y_{2}\right)$ and

$$
G\left(y_{n}, y_{n}, y_{m}\right) \leq G\left(y_{n}, y_{n}, y_{n+1}\right)+G\left(y_{n+1}, y_{n+1}, y_{n+2}\right)+----+-----+G\left(y_{m-1}, y_{m-1}, y_{m}\right)
$$

$$
\leq q^{n} G\left(y_{0}, y_{1}, y_{2}\right)+q^{n+1} G\left(y_{0}, y_{1}, y_{2}\right)+\cdots+--q^{n-1} G\left(y_{0}, y_{1}, y_{2}\right)
$$

$$
\leq\left(\frac{q^{n}-q^{m}}{1-q}\right) G\left(\mathrm{y}_{0}, \mathrm{y}_{1}, \mathrm{y}_{2}\right) \leq\left(\frac{q^{n}}{1-q}\right) G\left(\mathrm{y}_{0}, \mathrm{y}_{1}, \mathrm{y}_{2}\right) \rightarrow 0 \text { as } n \rightarrow \infty
$$

So, the sequence $\left\{y_{n}\right\}$ is a Cauchy sequence in X and as X is complete $\left\{y_{n}\right\}$ will converge to y in X i.e. $\lim _{n \rightarrow \infty} y_{n}=y$, $\lim _{n \rightarrow \infty} \mathrm{fx}_{3 \mathrm{n}}=\lim _{n \rightarrow \infty} \mathrm{gx}_{3 n+1}=\lim _{n \rightarrow \infty} \mathrm{hx}_{3 n+2}=\quad \lim _{n \rightarrow \infty} \mathrm{tx}_{3 n+1}=\lim _{n \rightarrow \infty} \mathrm{Sx}_{3 n+2}$
$=\lim _{n \rightarrow \infty} r_{3 n+3}=y$. Let $h(X)$ is a closed subset of $r(X)$. Then there exists $u \in X$ such that $r u=y$ Now consider
$G\left(f u, \mathrm{gx}_{3 n+1}, h x_{3 n+2}\right) \leq \phi\left\{\max \left\{G\left(\mathrm{gx}_{3 n+1}, f u, r u\right), G\left(h x_{3 n+2}, \mathrm{gx}_{3 n+1}, \mathrm{tx}_{3 n+1}\right), G\left(f u, \mathrm{sx}_{3 n+2}, h x_{3 n+2}\right)\right.\right.$,
$\left.\left.\alpha G\left(f u, r u, g x_{3 n+1}\right)+\gamma G\left(s x_{3 n+2}, f u, r u\right), \beta G\left(\mathrm{gx}_{3 n+1}, t x_{3 n+1}, h x_{3 n+2}\right)+\delta G\left(f u, g x_{3 n+1}, h x_{3 n+1}\right)\right\}\right\}$
$\leq \phi\{\max \{G(y, f u, r u), G(y, y, y), G(f u, y, y), \alpha G(f u, r u, y)+\gamma G(y, f u, r u)$,
$\beta G(y, y, y)+\delta G(f u, y, y)\}\}$
$\leq \phi\{\max \{G(y, f u, y), G(y, y, y), G(f u, y, y), \alpha G(f u, y, y)+\gamma G(y, f u, y)$, $\beta G(y, y, y)+\delta G(f u, y, y)\}\}$ $\leq \phi\{\max \{G(f u, y, y),(\alpha+\gamma) G(f u, y, y), \delta G(f u, y, y)\}$

We have following cases
Case-I: $\max =\mathrm{G}(\mathrm{fu}, \mathrm{y}, \mathrm{y})$ then from above inequality we have.
$\mathrm{G}(\mathrm{fu}, \mathrm{y}, \mathrm{y}) \leq \phi\{\mathrm{G}(\mathrm{fu}, \mathrm{y}, \mathrm{y})\}<\mathrm{G}(\mathrm{fu}, \mathrm{y}, \mathrm{y})$, which is a contraction.
Case-II: $\max =(\alpha+\gamma) G(f u, y, y)$ then from above inequality we have.
$G(f u, y, y) \leq \phi\{(\alpha+\gamma) G(f u, y, y)\}<(\alpha+\gamma) G(f u, y, y) \leq G(f u, y, y)$. This implies $G(f u, y, y)=0, f u=y$.
Case-III: $\max =\delta \mathrm{G}(\mathrm{fu}, \mathrm{y}, \mathrm{y})$ then from above inequality we have
$G(f u, y, y) \leq \phi\{\delta G(f u, y, y)\}<\delta G(f u, y, y) \leq G(f u, y, y)$. This implies $G(f u, y, y)=0, f u=y . A s r u=y$ we have $f u=r u=y$. As the pair (f, r) is weakly compatible we have $f r u=r f u$ hence $f y=r y$. Now we prove that $f y=y$.
$G\left(f y, g x_{3 n+1}, h x_{3 n+2}\right) \leq \phi\left\{\max \left\{G\left(g x_{3 n+1}, f y, r y\right), G\left(h x_{3 n+2}, g x_{3 n+1}, t x_{3 n+1}\right), G\left(f y, s x_{3 n+2}, h x_{3 n+2}\right)\right.\right.$, $\left.\left.\alpha G\left(f y, r y, g x_{3 n+1}\right)+\gamma G\left(s x_{3 n+2}, f y, r y\right), \beta G\left(g x_{3 n+1}, t x_{3 n+1}, h x_{3 n+2}\right)+\delta G\left(f y, g x_{3 n+1}, t x_{3 n+1}\right)\right\}\right\}$
$\leq \phi\{\max \{G(y, f y, r y), G(y, y, y), G(f y, y, y), \alpha G(f y, r y, y)$
$+\gamma G(y, f y, r y), \beta G(y, y, y)+\delta G(f y, y, y)\}\}$
$\leq \phi\{\max \{G(y, f y, f y), G(f y, y, y), \alpha G(f y, f y, y)+\gamma G(f y, f y, y), \delta G(f y, y, y)\}$
$\leq \phi\{\max \{2 \mathrm{G}(\mathrm{y}, \mathrm{fy}, \mathrm{y}), \mathrm{G}(\mathrm{fy}, \mathrm{y}, \mathrm{y}),(2 \alpha+2 \gamma) \mathrm{G}(\mathrm{y}, \mathrm{fy}, \mathrm{y}), \delta \mathrm{G}(\mathrm{fy}, \mathrm{y}, \mathrm{y})\}$
$\leq \phi\{\max \{2 G(y, f y, y),(2 \alpha+2 \gamma) G(y, f y, y), \delta G(f y, y, y)\}$
We have following cases
Case-I: $\max =2 \mathrm{G}(\mathrm{y}, \mathrm{fy}, \mathrm{y})$ then from above inequality we get. $\mathrm{G}(\mathrm{y}, \mathrm{fy}, \mathrm{y})=0 \mathrm{i}, \mathrm{e} f \mathrm{f}=\mathrm{y}$.

Case-II: $\max =\delta \mathrm{G}(\mathrm{fy}, \mathrm{y}, \mathrm{y})$ then from the equality
$\mathrm{G}(\mathrm{fy}, \mathrm{y}, \mathrm{y}) \leq \phi\{\delta \mathrm{G}(\mathrm{fy}, \mathrm{y}, \mathrm{y})\}<\delta \mathrm{G}$ (fy, $\mathrm{y}, \mathrm{y})$, as $\alpha+\beta+\gamma+\delta<1 / 2$ so we have
$G(f y, y, y)=0$ which implies $f y=y$.
Case-III: $\max =(2 \alpha+2 \gamma) G(f u, y, y)$ then
$G(f u, y, y) \leq \phi\{(2 \alpha+2 \gamma) G(f y, y, y)\}<(2 \alpha+2 \gamma) G(f y, y, y) \leq G(f y, y, y)$ which implies fy $=y$
As $f y=r y=y$, we conclude f, r have common fixed point y. As $y=f y \in f(X) \subseteq t(X)$ there exists w such that $t w=y$. We shall now prove that $\mathrm{gw}=\mathrm{y}$.
$G\left(y, g w, h x_{3 n+2}\right)=G\left(f y, g w, h x_{3 n+2}\right)$

$$
\begin{aligned}
& \leq \phi\left\{\begin{array}{l}
\max \left\{G(g w, f y, r y), G\left(h x_{3 n+2}, g w, t w\right), G\left(f y, ~ s x_{3 n+2}, h x_{3 n+2}\right), \alpha G(f y, r y, g w)\right. \\
\left.\left.\quad+\gamma G\left(s x_{3 n+2}, f y, r y\right), \beta G\left(g w, t w, h x_{3 n+2}\right)+\delta G(f y, g w, t w)\right\}\right\} \\
\leq \phi\{\max \{G(g w, y, y), G(y, g w, y), G(y, y, y), \alpha G(y, y, g w)+\gamma G(y, y, y), \\
\quad \beta G(g w, y, y)+\delta(y, g w, y)\}\} \\
\leq \phi\{\max \{G(y, g w, y), \alpha G(y, y, g w),(\beta+\delta) G(g w, y, y)\}
\end{array}\right.
\end{aligned}
$$

We have following cases
Case-I: $\max =G(y, g w, y)$ then from the inequality

$$
\mathrm{G}(\mathrm{y}, \mathrm{gw}, \mathrm{y}) \leq \phi\{\mathrm{G}(\mathrm{y}, \mathrm{gw}, \mathrm{y})\}<\mathrm{G}(\mathrm{y}, \mathrm{gw}, \mathrm{y}) \text { which is a contraction. }
$$

Case-II: $\max =\alpha G(y, g w, y)$ then from the inequality
$G(y, g w, y) \leq \phi\{\alpha G(y, g w, y)\}<\alpha G(y, g w, y)$ which implies $G(y, g w, y)=0$ then $g w=y . A s t w=y=g w$ and (g, t) being weakly compatible we have $\mathrm{gtw}=\mathrm{tgw}$. Then $\mathrm{gy}=\mathrm{ty}$. We now prove $\mathrm{gy}=\mathrm{y}$.

Consider

$G\left(f y, g y, h x_{3 n+2}\right) \leq \phi\left\{\max \left\{G(g y, f y, r y), G\left(h x_{3 n+2}, g y, t y\right), G\left(f y, s x_{3 n+2}, h x_{3 n+2}\right), \alpha G(f y, r y, g y)\right.\right.$

$$
\left.\left.+\gamma G\left(\mathrm{sx}_{3 \mathrm{n}+2}, \mathrm{fy}, \mathrm{ry}\right), \beta \mathrm{G}\left(\mathrm{gy}, \mathrm{ty}, \mathrm{hx}_{3 \mathrm{n}+2}\right)+\delta \mathrm{G}(\mathrm{fy}, \mathrm{gy}, \mathrm{ty})\right\}\right\}
$$

$\leq \phi\{\max \{G(g y, y, y), G(y, g y, g y), G(y, y, y), \alpha G(y, y, g y)+\gamma G(y, y, y)$, $\beta G(g y, g y, y)+\delta G(y, g y, g y)\}\}$
$\leq \phi\{\max \{G(g y, y, y), 2 G(y, g y, y), \alpha G(y, y, g y),(2 \beta+2 \delta G(y, y, g y)\}$
$\leq \phi\{\max \{2 \mathrm{G}(\mathrm{y}, \mathrm{gy}, \mathrm{y}), \alpha \mathrm{G}(\mathrm{y}, \mathrm{y}, \mathrm{gy}),(2 \beta+2 \delta) \mathrm{G}(\mathrm{y}, \mathrm{y}, \mathrm{gy})\}$
We have following cases
Case-I: $\max =2 \mathrm{G}(\mathrm{y}, \mathrm{gy}, \mathrm{y})$ then from the above inequality.
$G(y, g y, y) \leq \phi\{2 G(y, g y, y)\}<2 G(y, g y, y)$, which implies $G(y, g y, y)=0$ then $g y=y$
Case-II: $\max =\alpha G(y, y, g y)$ then from the inequality we have.
$G(y, g y, y) \leq \phi\{\alpha G(y, y, g y)\}<\alpha G(y, y, g y)$.This implies $G(y, y, g y)=0$.Thus we have $g y=y$.
Case-III: $\max =(2 \beta+2 \delta) G(y, y, g y)$ then from the inequality we have.
$G(y, g y, y) \leq \phi\{(2 \beta+2 \delta) G(y, y, g y)\}<(2 \beta+2 \delta) G(y, y, g y)$. This implies $G(y, y, g y)=0$
So we have $\mathrm{gy}=\mathrm{y}$. Thus in either cases $\mathrm{gy}=\mathrm{y}$ and as $\mathrm{gy}=\mathrm{ty}=\mathrm{y}$ we have y is common fixed point of g, t.
Since $y=g y \in g(X) \subseteq S(X)$ there exist $v \in X$ such that $s v=y$. We now prove that $h v=y$.
G ($\mathrm{y}, \mathrm{y}, \mathrm{hv}$) = G (fy, gy, hv)
$\leq \phi\{\max \{G(g y, f y, r y), G(h v, ~ g y, ~ t y), G(f y, ~ s v, ~ h v), ~ \alpha G(f y, ~ r y, ~ g y) ~$
$+\gamma \mathrm{G}$ (sv, fy, ry), β G (gy, ty, hv) $+\delta \mathrm{G}$ (fy, gy, ty) $\}\}$
$\leq \phi\{\max \{G(y, y, y), G(h v, y, y), G(y, y, h v), \alpha G(y, y, y)$
$+\gamma G(y, y, y), \beta G(y, y, h v)+\delta G(y, y, y)\}\}$
$\leq \phi\{\max \{\mathrm{G}(\mathrm{hv}, \mathrm{y}, \mathrm{y}), \beta \mathrm{G}(\mathrm{y}, \mathrm{y}, \mathrm{hv})\}$

We have following cases
Case-I: $\max =\mathrm{G}(\mathrm{y}, \mathrm{y}, \mathrm{hv})$ then from the inequality above we have.
$\mathrm{G}(\mathrm{y}, \mathrm{y}, \mathrm{hv}) \leq \phi\{\mathrm{G}(\mathrm{y}, \mathrm{y}, \mathrm{hv})\}<\mathrm{G}(\mathrm{y}, \mathrm{y}, \mathrm{hv})$, which implies $\mathrm{G}(\mathrm{y}, \mathrm{y}, \mathrm{hv})=0$ then $\mathrm{hv}=\mathrm{y}$
Case-II: $\max =\beta \mathrm{G}(\mathrm{y}, \mathrm{y}, \mathrm{hv})$ then from the inequality we have.
$\mathrm{G}(\mathrm{y}, \mathrm{y}, \mathrm{hv}) \leq \phi\{\beta \mathrm{G}(\mathrm{y}, \mathrm{y}, \mathrm{hv})\}<\beta \mathrm{G}(\mathrm{y}, \mathrm{y}, \mathrm{hv})$, which implies $\mathrm{hv}=\mathrm{y}$. Thus in either cases $\mathrm{hv}=\mathrm{y}$. As sv = y so we have $\mathrm{sv}=\mathrm{hv}=\mathrm{y}$. Since (h, s) are weakly compatible so $\mathrm{hsv}=\mathrm{shv}$ then $\mathrm{hy}=\mathrm{sy}$. We now prove that hy $=\mathrm{y}$.

Consider

$$
\begin{aligned}
& G(y, y, h y)=G(f y, g y, h y) \\
& \leq \phi\{\max \{G(g y, f y, r y), G(h v, ~ g y, ~ t y), G(f y, ~ s y, ~ h y), ~ \alpha G(f y, ~ r y, ~ g y) ~ \\
& +\gamma \text { G (sy, fy, ry), } \beta \text { G (gy, ty, hy) }+\delta \text { G (fy, gy, ty) }\}\} \\
& \leq \phi\{\max \{G(y, y, y), G(h y, y, y), G(y, h y, h y), \alpha G(y, y, y)+\gamma G(h y, y, y), \\
& \beta G(y, y, h y)+\delta G(y, y, y)\}\} \\
& \leq \phi\{\max \{\mathrm{G} \text { hy, } \mathrm{y}, \mathrm{y}), \gamma \mathrm{G}(\mathrm{hy}, \mathrm{y}, \mathrm{y}), \beta \mathrm{G}(\mathrm{y}, \mathrm{y}, \mathrm{hy})
\end{aligned}
$$

We have following cases
Case-I: $\max =\mathrm{G}(\mathrm{hy}, \mathrm{y}, \mathrm{y})$ then from the inequality we have.
$\mathrm{G}(\mathrm{hy}, \mathrm{y}, \mathrm{y}) \leq \phi\{\mathrm{G}(\mathrm{hy}, \mathrm{y}, \mathrm{y})\}<\mathrm{G}$ (hy, y, y) which is a contradiction .
Case-II: $\max =\gamma \mathrm{G}(\mathrm{hy}, \mathrm{y}, \mathrm{y})$ then from the inequality we have.
G (hy, y, y) $\leq \phi\{\gamma \mathrm{G}$ (hy, y, y) $\}<\gamma$ G (hy, y, y), hence G (hy, y, y) $=0$ which gives hy $=\mathrm{y}$.
Case-III: $\max =\beta \mathrm{G}(\mathrm{hy}, \mathrm{y}, \mathrm{y})$ then from the inequality we have. $\mathrm{G}(\mathrm{hy}, \mathrm{y}, \mathrm{y}) \leq \phi\{\beta \mathrm{G}(\mathrm{hy}, \mathrm{y}, \mathrm{y})\}<\beta \mathrm{G}$ (hy, $\mathrm{y}, \mathrm{y})$, which implies G (hy, y, y) $=0$ which gives hy $=\mathrm{y}$.

Thus in either cases $h y=y$. As $s y=h y=y$ therefore y is common fixed point of s and h. Thus y is common fixed point of $\mathrm{f}, \mathrm{r}, \mathrm{s}, \mathrm{t}, \mathrm{h}, \mathrm{g}$. We shall now prove that the fixed point is unique. Let y^{\prime} be another fixed point of $\mathrm{f}, \mathrm{r}, \mathrm{g}, \mathrm{t}, \mathrm{s}, \mathrm{h}$. Then

G (y, y, hy') = G (fy , gy, hy')

$$
\begin{aligned}
\leq \phi & \{\max \{G(g y, f y, r y), G(h y ', g y, t y), G(f y, \text { hy', sy'), } \alpha G(f y, r y, ~ g y) \\
& +\gamma G(s y ', f y, r y), \beta G(g y, t y, h y ')+\delta G(f y, g y, t y)\}\} \\
\leq \phi & \left\{\max \left\{G(y, y, y), G\left(y^{\prime}, y, y\right), G\left(y, y^{\prime}, y^{\prime}\right), \alpha G(y, y, y)+\gamma G\left(y^{\prime}, y, y\right), \beta G\left(y, y, y^{\prime}\right)+\delta G(y, y, y)\right\}\right\} \\
\leq & \phi\left\{\max \left\{G\left(y^{\prime}, y, y\right), 2 G\left(y, y, y^{\prime}\right), \gamma G\left(y, y^{\prime}, y\right), \beta G\left(y, y, y^{\prime}\right)\right\}\right. \\
\leq & \left\{\max \left\{2 G\left(y, y, y^{\prime}\right), \gamma G\left(y, y, y^{\prime}\right), \beta G\left(y, y, y^{\prime}\right)\right\}\right\}
\end{aligned}
$$

We have following cases
Case-I: $\max =\beta G\left(y, y, y^{\prime}\right)$ then from the inequality we have.
$G\left(y, y, y^{\prime}\right) \leq \phi\left\{\beta G\left(y, y, y^{\prime}\right)\right\}<\beta G\left(y, y, y^{\prime}\right)$, which implies $G\left(y, y, y^{\prime}\right)=0$ then $y=y^{\prime}$
Case-II: $\max =2 \mathrm{G}\left(\mathrm{y}, \mathrm{y}, \mathrm{y}^{\prime}\right)$ then from the inequality we have.
$\mathrm{G}\left(\mathrm{y}, \mathrm{y}, \mathrm{y}^{\prime}\right)=\phi\left\{2 \mathrm{G}\left(\mathrm{y}, \mathrm{y}, \mathrm{y}^{\prime}\right)\right\}<2 \mathrm{G}\left(\mathrm{y}, \mathrm{y}, \mathrm{y}^{\prime}\right)$, which implies $\mathrm{G}\left(\mathrm{y}, \mathrm{y}, \mathrm{y}^{\prime}\right)=0$ as Therefore $\mathrm{y}=\mathrm{y}^{\prime}$
Case-III: $\max =\gamma \mathrm{G}\left(\mathrm{y}, \mathrm{y}, \mathrm{y}^{\prime}\right)$ then from the inequality we have.
$\mathrm{G}\left(\mathrm{y}, \mathrm{y}, \mathrm{y}^{\prime}\right)=\phi\left\{\gamma \mathrm{G}\left(\mathrm{y}, \mathrm{y}, \mathrm{y}^{\prime}\right)\right\}<\gamma \mathrm{G}\left(\mathrm{y}, \mathrm{y}, \mathrm{y}^{\prime}\right)$, which implies $\mathrm{G}\left(\mathrm{y}, \mathrm{y}, \mathrm{y}^{\prime}\right)=0$ as Therefore $\mathrm{y}=\mathrm{y}{ }^{\prime}$
Thus the mappings $\mathrm{f}, \mathrm{r}, \mathrm{g}, \mathrm{t}, \mathrm{h}$, s have unique common fixed point.

REFERENCES

1. B.C. Dhage. Generalized metric spaces and mapping with fixed points. Bull. Calcutta Math, Soc. 84(1992), 329-336.
2. B. C. Dhage, On generalized metric spaces and topological structure II, Pure Appl. Math. Sci. 40 (1994), 37-41.
3. B. C. Dhage, A common fixed point principle in D-metric spaces. Bull. Calcutta Math. Soc. 91 (1999), 475-480.
4. B. C. Dhage, Generalized metric spaces and topological structure. I, Annalele Stiintifice ale Universitatii Al.I. Cuza, (2000).
5. G.Jungck, Compatible mappings and common fixed points, Int. J. Math. Sci., 9 (4) (1986), 771-779.
6. G.Jungck,Common fixed points for noncontinuous nonself maps on non-metric spaces,far East J.Math.Sci.,4(1996),199-215.
7. G.Jungck,, B.E. Rhoades, Fixed points for set valued functions without continuity,Indian J, Pure Appl. Math.29(1998),227-238.
8. M. Abbas, B.E. Rhoades, Common fixed point results for noncommuting mappings without continuity in generalized metric spaces, Appl. Math. Comput. 215 (2009). 262-269.
9. M. Abbas, T. Nazir, S. Radcnovic, Some periodic point results in generalized metric spaces, Appl. Math. Comput. 217 (2010). 4094-4099.
10. R.Chugh, T. Kadian, A. Rani, B. E. Rhoades, Property P in G-metric spaces. Fixed Point Theory Appl. 2010 (2010), Article ID 401684.
11. S. Sessa, On a weak commutativity condition of mappings in fixed point consideration, Publ. Inst. Math. Soc. 32 (1982), 149-153.
12. S.S. Tomer, D. Singh, M.S. Rathore, Common fixed point theorems via weakly compatible mappings in complete G-metric spaces: Using control functions. Adv. Fixed Point Theory, 4 (2014) No. 2, 245-262.
13. W.Shatanawi, Fixed point theory for contractive mappings satisfying U-maps in G-metric spaces. Fixed Point Theory Appl. 2010 (2010), Article ID 181650.
14. Z. Mustafa, B. Sims, Some remarks concerninig D-metric spaces, in Proceedings of the Internatinal Conferences on Fixed Point Theory and Applications, pp. 189-198, Valencia, Spain, July 2003.
15. Z. Mustafa, B. Sims, A new approach to generalized metric spaces, J. Nonlinear Convex Anal. 7 (2006), 289-297.
16. Z. Mustafa, H. Obiedat, F Awawdeh, Some fixed Point theorem for mapping on complete G - metric spaces, Fixed Point Theory Appl. 2008 (2008), Article ID 189870.
17. Z. Mustafa, B, Sims, Fixed point theorems for contractive mapping in complete G-metric spaces, Fixed Point Theory Appl. 2009 (2009), Article ID 917175.
18. Z. Muilata, W. Shatanawi, M. Bataineh, Existence of fixed point results in G-metric spaces, Int. Math. Math. Sci. 2009 (2009), Article ID 283028.

Source of Support: Nil, Conflict of interest: None Declared

[Copy right © 2014 This is an Open Access article distributed under the terms of the International Research Journal of Pure Algebra (IRJPA), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.]

[^0]: *Corresponding author: Dr. Shalu Saxena*
 Sri Sathy Sai College for Women Bhopal, (M.P.), India.

