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ABSTRACT 
In this paper, with the help of p -map, we have defined an H-transversal for an H-group and then we have shown that 
p( )G  is an H-group. 
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1. INTRODUCTION 

 
We have observed that Ramji Lal and Ungar & Foguel in their papers [3, 4] have studied transversals in groups in 
abstract sense. In our paper namely, H-transversal in H-groups [5], we have studied transversals in topological sense 
and then we have shown that there is a canonical H-group structure on ( )p G  with respect to which the inclusion 

( ) ip G G→   is an H-subgroup of an H-group ( , )G  µ  where map p  be an H-transversal. 
 
In this paper, using p -map, we have defined another H-transversal for an H-group. Then we have proved that ( )p G  
is also an H-group. 
 
Note: Throughout the paper ≈  represents homotopy between two maps. 
 
1. p -map  and H-Space 

 
In the present section, we have defined p -map, topological group, H-space, etc [1, 2, 6]. 
 
Definition 2.1:  Let G  be a group with identity e . A map p  from G  to G  satisfying the following properties:  

(i)  ( )  p e e=     

(ii) 2p p=      

(iii) 1 2 1 2p( ) p(p( ) )g g g g=   , is called a  p - map . 
 
Example 2.2:  Identity map I  on the group G  is a  p - map . 
 
Proposition 2.3: Let G  be a group with identity e . Let H  be a subgroup of G and S  be a right transversal (with 
identity) to H  in G .Since each   g G∈  can be uniquely written as hx  where   h H∈  and x S∈ . Then a map 

:   p G G→  defined by ( )  p g x=  is a  p - map . 
 
Proof: Proof follows from proposition 2.3 of [6].  
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Proposition 2.4: Let G  be a group with identity e  and  p : G G→  be a  p - map . Then the set  { : ( ) }H g G p g e= ∈ =  

is a subgroup of G . 
 
Proof: Proof follows from proposition 2.6 of [6]. 
 
Proposition 2.5: Let G  be a group with identity e  and  p : G G→  be a  p - map . Then the subset  { }p( ) :S g g G= ∈  

of G  is a right transversal with identity to the subgroup { : ( ) }H g G p g e= ∈ =  in G . 
 
Proof: Proof follows from proposition 2.7 of [6]. 
 
Definition 2.6: A topological group G  is a group that is also a topological space, satisfying the requirements that the 
map of G G×  into G  sending x y×  into x y⋅ , and the map of G  into G  sending x  into 1x− , are continuous.  
 
Definition 2.7:  A nonempty topological space with a base point is called a pointed topological space.  
 
Definition 2.8: A pointed topological space G  with base point 0e  together with a continuous multipication 

: G G Gµ × →   for which the unique constant map :c G G→  defined by 0( )c x e= , is a homotopy identity, that is, 

each composite ( 1)cG G G G× µ→ × →  and (1 )cG G G G× µ→ × →  is homotopic to identity map 
(1 : )G G G→ , is called an H-space.  
 
Example 2.8: Any topological group is an H-space. 
 
3. H-GROUP AND H-TRANSVERSAL 

 
In this section, by defining H-group and H-transversal, we have shown that ( )p G  is an H-group. (Theorem 3.13) 
 
Definition 3.1: Let G  be an H-space. The continuous multipication : G G Gµ × →  is said to be homotopy 
associative if ( 1) (1 )µ µ× ≈ µ ×µ  . 
 
Definition 3.2:  Let G  be an H-space. A continuous function : G Gϕ →   is called a homotopy inverse for G  and 

µ  if each of the composites ( 1)G G G Gϕ× µ→ × →  and (1 )G G G G×ϕ µ→ × →   is homotopic to 

homotopic identity :c G G→ . 
 
Definition 3.3: A homotopy associative H-space with a homotopy inverse satisfies the group axioms upto homotopy. 
Such a pointed space is called an H- group. 
 
Example 3.4: Any topological group is also an H-group.  
 
Definition 3.5: The continuous multiplication : G G Gµ × →   in an H-group G  is said to be homotopy abelian if 

Tµ ≈ µ  where the map  :T G G G G× → ×  is defined by 1 2 2 1(p , p ) (p ,p )T = . 
 
Definition 3.6:  An H-group with homotopy abelian multiplication is called an abelian H-group. 
 
Definition 3.7: If G  and 'G  are H-groups with multiplication µ  and 'µ  respectively. A continuous map ': G Gα →  

is called a homomorphism if  ' ( , )α µ ≈ µ α α  . 
 
Definition 3.8:  If G  and 'G  are H-groups with multiplication µ  and 'µ  respectively. A homomorphism  

': G Gα →  is called an H-map if  'c cα ≈ α   where c  and 'c  are homotopy identity for G  and 'G  respectively. 
 
Definition 3.9: An equivalence class of monomorphism in the category of H-groups is called an H-subgroup.  More 
explicitly, let ( , )G µ  be an H-group. An H-subgroup is an H-group ( , )K ν  together with an H-map : K Gϕ →   if 

given any H-group ( , )L η  and two H-maps 1 2, :f f L K→  such that 1 2f fϕ ≈ ϕ   ⇒   1 2f f≈ . Thus [ ]ϕ  is a  
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class of monomorphisms in the category of H-groups (objects are H-groups and morphisms are equivalence class of H-
maps). This described a subgroup as an equivalence class of H-maps. 
 
Definition 3.10: Consider the set { : : ( , ) ( , )}S K G is an H map K is an H subgroup of an H-group G= ϕ → − ν − µ .                                

Define two H-maps 1 1: K Gϕ →  and 2 2: K Gϕ →  equivalent if there exists H-maps 1 1 2:h K K→  and 

2 2 1:h K K→  such that 
12 1 Kh h I≈ , 

21 2 Kh h I≈ , 2 1 1hϕ ≈ ϕ  and 1 2 2hϕ ≈ ϕ .  
 
Proposition 3.11: Let 0( , )X x  and 0( , )Y y  be two pointed topological spaces. Then { : :X   I XΩ = ω ω →  

0}is a loop based  at  x   is an H-group with continuous multiplicationµ . Similarly { : :Y I Y Ω = ω ω →  

0}is a loop based  at  y  is an H-group with continuous multiplicationν . Let  0 0: ( , ) ( , )f Y y X x→  is a 

continuous map. Then ( , )YΩ ν   is an H-subgroup together with an H-map ( , ) ( , )fY XΩΩ ν → Ω µ .  
 
Proof:  Proof follows from proposition 2.14 of [5]. 
 
Definition 3.12: An H-transversal in an H-group ( , )G µ  is a continuous identity preserving map :p G G→  such 
that  

(i)  2p p≈   

(ii) ( 1 )Gp p pµ ≈ µ ×  
    

 
Theorem 3.13:  Let ( , )G µ  be an H-group with base point identity element e  of the group G . Let p  be an H-
transversal in an H-group ( , )G µ . Then ( )p G  is an H-group with respect to the operation ν  defined as follows 

1 2 1 2( ( ), ( )) ( )( ( ), ( ))p g p g p p g p gν = µ    
  for all 1 2,g g G∈ . 

 
Proof:  Since  p  be an H-transversal in an H-group ( , )G µ  then we have  ( 1 )Gp p pµ ≈ µ ×  

    
 
Thus there is a homotopy   :H G G I G× × → such that  

1 2 1 2(( , ),0) ( ( , ))H g g p g g= µ  

1 2 1 2(( , ),1) p( (p( ), ))H g g g g= µ   for all  1 2,g g G∈  
 
Define a product  : ( ) ( ) ( )p G p G p Gν × →      by  

1 2 1 2(p( ), p( )) ((p( ), p( )),0)g g H g gν =     

         = 1 2p( (p(p( )), p( )))g gµ     

         = 1 2p( (p( ), p( )))g gµ    

         = 1 2(p )(p( ), p( ))g gµ  
  

 
We show that  ( ( ), )p G ν  is an H-group. 
 
Since p  and µ  are continuous so is ν . 
 
Now, 
(i)  Since G  is an H-group so the constant map :Gc  G G → given by ( )Gc g e=   is a homotopy identity that is, 

( 1 )G Gcµ ×  is homotopic to identity map 1G  and similarly  (1 )G G cµ ×  is also homotopic to identity map 1G . 
 
Now for ( ) ( )p g p G∈  , we have 

             ( ( 1 )) p( ) ( (p( )), p( ))G G Gc g c g gµ × = µ  
   =  ( , p( ))e gµ   

 
Let  ( ) : ( ) ( )p Gc p G p G→



   denote constant map on ( )p G  defined by ( ) ( ( )) ( )p Gc p g p e e= =


  . Replacing G  

above by ( )p G .  
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We have  

( ) ( )( ( 1 ))( ( ))p G p Gc p gν ×
 


  = ( )( ( ( ( )), ( ))))p Gc p g p gν



   

                                                 = ( , ( ))e p gν   
                                                 = ( )( , ( ))p e p gµ 

  

                                                ≈  ( )(( 1 )( ( )))G Gp c p gµ × 
  

                                                ≈  (( ( 1 ))( ( )))G Gp c p gµ × 
  

                                                ≈  (1 ( ( )))Gp p g   

                                                ≈  ( ( ))p p g   

                                                ≈  ( )p g  

                                                ≈  ( )1 ( ( ))p G p g


  
 
Thus  ( ) ( ) ( )( 1 ) 1p G p G p Gcν × ≈

  

  
 
Similarly, ( ) ( ) ( )(1 ) 1p G p G p Gcν × ≈

  

     
 
Thus  ( )p Gc



  is homotopic identity for ( ( ), )p G ν .  
 
(ii)  Let  : G Gϕ →   be homotopy inverse for ( , )G µ . So  ( 1 )Gµ ϕ×  and  (1 )Gµ ×ϕ  are homotopic to 

homotopy identity Gc  for G . 
 
Now,   

( ) ( )( (1 ))( ( ))p G p G p gν ×ϕ
 


  = ( )( ( ), ( ( )))p Gp g p gν ϕ



   

          = 1( ( ), ( ))p g p gν     for some  1g G∈  

          = ( )(1 ( ( )), ( ( )))Gp p g p gµ ϕ  
       [ p( ) p( )g G G∈ ⊂ 

 ] 

          = (p )((1 )(p( )))G gµ ×ϕ 
  

          = p(( (1 ))(p( )))G gµ ×ϕ 
  

         ≈  p( (p( )))Gc g   

         ≈  ( )p e  
         ≈  e  
         ≈  ( ) ( ( ))p Gc p g



  
 
Thus, ( ) ( ) ( )(1 )p G p G p Gcν ×ϕ ≈

  

    
 
Similarly, we can show that  ( ) ( ) ( )( 1 )p G p G p Gcν ϕ × ≈

  

   
 
Hence ( )p Gϕ



  is homotopy inverse for ( )p G . 
 
(iii)  Since ( , )G µ  is associative. So we have  ( 1 )Gµ µ×  ≈  (1 )Gµ ×µ . 
 
Now, replacing G  by ( )p G , we have to show that  ( )(1 )p Gν ×ν



  ≈  ( )( 1 )p Gν ν×


  
 
Now,   
 ( ) 1 2 3( (1 ))( ( ), ( ), ( ))p G p g p g p gν ×ν



  
  = 1 2 3( ( ), ( ( ), ( )))p g p g p gν ν    

                                                                      = 1 2 3( ( ), ( )( ( ), ( )))p g p p g p gν µ   
  

                                                                     ≈  1 2 3( )( ( ( )), ( ( ( ), ( ))))p p p g p p g p gµ µ     
       [Since 2p p≈  ] 

                                                                     ≈  1 2 3(( ) )( ( ), ( ( ), ( )))p p p p g p g p gµ × µ     
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                                                                     ≈  1 2 3(( ( 1 )) )((1 )( ( ), ( ), ( )))G Gp p p p p g p g p gµ × × ×µ      
    

                                                                                                                   [Since ( 1 )Gp p pµ ≈ µ ×  
   ] 

                                                                     ≈  1 2 3(( ) (( 1 ) ))((1 )( ( ), ( ), ( )))G Gp p p p p g p g p gµ × × ×µ      
    

                                                                     ≈  1 2 3(( ) ( 1 ))((1 )( ( ), ( ), ( )))G Gp p p g p g p gµ × ×µ    
   

                                                                                                                   [Since ( 1 ) ) 1G Gp p p p× × = ×   
   on p( )G ] 

                                                                     ≈  1 2 3( )((1 )( ( ), ( ), ( )))Gp p g p g p gµ ×µ   
  

                                                                     ≈  1 2 3( ( (1 )))( ( ), ( ), ( ))Gp p g p g p gµ ×µ   
   

                                                                     ≈  1 2 3( ( ( 1 )))( ( ), ( ), ( ))Gp p g p g p gµ µ×   
   

                                                                     ≈  1 2 3( )(( 1 )( ( ), ( ), ( )))Gp p g p g p gµ µ×   
  

                                                                     ≈  1 2 3( (p 1 ))( ( ( ), ( )), ( ))Gp p g p g p gµ × µ   
   

 

                                                                     ≈  1 2 3( ((p 1 ) (p p))( ( ( ), ( )), ( ))Gp p g p g p gµ × × µ     
    

                                                                     ≈  1 2 3( (p 1 ))(p( ( ( ), ( ))), p( ( )))Gp p g p g p gµ × µ     
   

                                                                     ≈  1 2 3( )(( )( ( ), ( )), ( ))p p p g p g p gµ µ    
   

                                                                     ≈  1 2 3( ( ( ), ( )), ( ))p g p g p gν ν     

                                                                     ≈  ( ) 1 2 3(( 1 )( ( ), ( ), ( ))p G p g p g p gν ν


  
  

                                                                     ≈  ( ) 1 2 3( ( 1 ))( ( ), ( ), ( ))p G p g p g p gν ν


  
   

 
Thus  ( )( (1 ))p Gν ×ν



 ≈ ( )( ( 1 ))p Gν ν


   
 

Hence  (p( ), )G ν  is an H-group. 
 

4. CONCLUSION 
 

In our paper, extension of groups using  p -maps [6], we have shown that G  be an extension of the subgroup 

{ : ( ) }H g G p g e= ∈ =  with a right transversal { }p( ) :S g g G= ∈ . In this paper, we have tried to find out its 

approach in topological sense by making  p  to be continuous map. We are hopeful that using category theory, one can 
find some relationship between algebraic and topological approach.  
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