A STUDY ON THE TAYLOR_CESÀRO PRODUCT SUMMABILITY METHOD OF FOURIER SERIES

Dr. S. K. Tiwari ${ }^{1}$ and Vinita Sharma*2
School Of Studies in Mathematics, Vikram University Ujjain (M.P.), India.

(Received On: 20-10-14; Revised \& Accepted On: 31-10-14)

Abstract

In the present paper, we will study on the $\left(T_{n} C_{2}\right)$ product summability method of Fourier series under the general condition. In this paper we will prove a new theorem on the degree of approximation of function belonging to lip α class by $\left(T_{n} C_{2}\right)$ means of its Fourier series.

Keywords: Degrees of approximation, Taylor_Cesàro mean, Fourier series.

1. INTRODUCTION

Let f be 2π - periodic and integrable in the Lebesgue sense. The Fourier series associated with f at a point x is given by

$$
f \sim \frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos n x+b_{n} \sin n x
$$

A function $f \in \operatorname{lip} \alpha$, if

$$
f(x \pm t)-f(x)=0\left(\left|t^{\alpha}\right|\right) \text { for } 0<\alpha \leq 1
$$

Definition 1.1: The degree of approximation of a function $f: R \rightarrow R$ by a trigonometric polynomial T_{n} of degree n is given by

$$
\left\|T_{n}-f\right\|_{\infty}=\sup \left\{\left|T_{n}(x)-f(x)\right|: x \in p\right\}
$$

Definition 1.2: Let $\sum u_{n}$ be a given infinite series with sequence of its $n^{\text {th }}$ partial sum $\left\{\mathrm{S}_{n}\right\}$. The ($\mathrm{C}, 2$) transform is defined as the nth partial sum of $(C, 2)$ summability and is given by

$$
\sigma_{n}=\frac{2}{(n+1)(n+2)} \sum_{k=0}^{n}(n-k+1) S_{k} \rightarrow S \text { as } n \rightarrow \infty
$$

then the infinite series $\sum_{n=0}^{\infty} u_{n}$ is summable to the definite number s by $(\mathrm{C}, 2)$, method.
Definition 1.3: A given sequence $\left\{\mathrm{S}_{\mathrm{n}}\right\}$ is said to be Taylor summable, if

$$
\left(T_{n}\right)=\sum_{k=0}^{n} u_{n, k} S_{k} \rightarrow S \text { as } n \rightarrow \infty
$$

then the (c, 2) transform of Taylor means defines the $\left(T_{n} C_{2}\right)$ transform of the partial sums $\left\{\mathrm{S}_{\mathrm{n}}\right\}$ of the series (1.1).
Thus, if $\left(T_{n} C_{2}\right)=\sum_{k=0}^{n} u_{n, n-k}, \sigma_{n-k} \rightarrow S$ as $n \rightarrow \infty$
then $\quad \sum_{n=0}^{\infty} u_{n}$ is said to be $T_{n} C_{2}$ summable to S

Remark 1.1: We shall use following notations:
(i) $\varnothing(t)=f(x+t)-f(x-t)-2 f(x)$
(ii) $D(n, t)=\frac{1}{2 \pi} \sum_{k=0}^{n} \frac{u_{n, n-k}}{(n-k+2)} \frac{\sin ^{2}(n-k+2) t / 2}{\sin ^{2} t / 2}$

2. MAIN THEOREM

The degree of approximation of functions belonging to Lip α class by various summability methods of the Fourier series of f have been studied by several researchers like Alexits [1], Chandra [2], Holland [3] and Qureshi [4] etc. Here in the present paper, we obtain the degree of approximation of function $f \in \operatorname{Lip} \alpha$, class by Taylor_Cesàro product simmability method we prove the following :

Theorem 2.1: If $f: R \rightarrow R$ is 2π periodic and lebesgue integrable on $[-\pi \pi]$ and $f \in \operatorname{Lip} \alpha$, then the degree of approximation of function by Taylor_Cesàro product means of the Fourier series, satisfies for $n=0,1,2 \ldots$,
$\left\|T_{n} C_{2}(x)-f(x)\right\|_{\infty}=\left\{\begin{array}{l}0\left(\frac{1}{(n+2)^{\alpha}}\right) ; 0<\alpha<1 \\ 0\left(\frac{\log (n+2) \pi e}{n+2}\right) ; \alpha=1\end{array}\right.$
where $T_{n}=a_{n, k}$ is a non- negative, monotonic and non-increasing sequence of real constant such that

$$
\begin{equation*}
\left|\sum_{k=0}^{n} u_{n, n-k}\right|=0(1) \tag{2.1}
\end{equation*}
$$

for the proof of the theorem, the following lemmas are required :
Lemma 2.1: For $O \leq t \leq \frac{1}{n+2} ; D(n, t)=O(n+2)$
Proof: we have

$$
\begin{aligned}
|D(n, t)| & =\left|\frac{1}{2 \pi} \sum_{k=0}^{n} \frac{u_{n, n-k}}{(n-k+2)} \frac{\sin ^{2}(n-k+2) t / 2}{\sin ^{2} t / 2}\right| \\
& \leq \frac{1}{2 \pi}\left|\sum_{k=0}^{n} \frac{u_{n, n-k}}{(n-k+2)} \frac{(n-k+2)^{2}(n-k+2) t^{2} / \pi^{2}}{t^{2} / \pi^{2}}\right| \\
& =O(n+2)\left|\sum_{k=0}^{n} u_{n, n-k}\right| \\
& =O(n+2) \quad \text { by (2.1) }
\end{aligned}
$$

Lemma 2.2: For $1 /(n+2) \leq t \leq \pi ; D(n, t)=0\left(\frac{1}{(n+2) t^{2}}\right)$
Proof: We have
$|D(n, t)|=\left|\frac{1}{2 \pi} \sum_{k=o}^{n} \frac{u_{n, n-k}}{n-k+2)} \frac{\sin ^{2}(n-n+2) t / 2}{\sin ^{2} t / 2}\right|$

Using Jordan's lemma $\sin \frac{t}{2} \geq, \frac{t}{\pi}$ and $\sin k t \leq 1$; we have

$$
\begin{aligned}
& \leq \frac{1}{2 \pi}\left|\sum_{k=0}^{n} \frac{u_{n, n-k}}{(n-k+2)} \frac{1}{t^{2} / \pi^{2}}\right| \\
& =0\left(\frac{1}{n+2}\right)\left|\sum_{k=0}^{n} u_{n, n-k}\right| \\
& =0\left(\frac{1}{(n+2) t^{2}}\right), b y(2.1)
\end{aligned}
$$

3. PROOF OF THE THEOREM

Let $S_{n}(x)$ denote the nth partial sum of the series (1.1) at $\mathrm{t}=x$, then the following Titchmarch [5], we have $\sigma_{n}(x)-f(x)=\frac{2(n-k+1)}{2 \pi(n+1)(n+2)} \int_{0}^{\pi} \frac{\sin ^{2}(n+2) t / 2}{\sin ^{2} t / 2} d t$

Now, the Taylor, transform of the sequence $\left\{\sigma_{n}\right\}$ is given by

$$
\sum_{k=0}^{n} u_{n, n-k}\left\{\sigma_{n}(x)-f(x)\right\}=\frac{2}{2 \pi} \int_{0}^{\pi} \varnothing(t) \sum_{k=0}^{n} \frac{u_{n, n-k}}{(n-k+2)} \frac{\sin ^{2}(n-k+2) t / 2}{\sin ^{2} t / 2} d t ; \text { at } k=0
$$

Or

$$
\begin{align*}
T_{n} C_{2}(x)-f(x) & =2 \int_{0}^{\pi} \varnothing(t) D(n, t) d t \\
& =2\left[I_{1}+I_{2}\right] \text { Say } \tag{3.1}
\end{align*}
$$

Let us consider I_{1} first

$$
\begin{align*}
\left|I_{1}\right| & =\left|\int_{0}^{1 / n+2} \varnothing(t) D(n, t) d t\right| \\
& \leq \int_{0}^{1 / n+2}|\varnothing(t)||D(n, t)| d t \\
& =\int_{0}^{1 / n+2} \varnothing\left(t^{\alpha}\right) O(n+2) d t, \text { by lemma } 2.1 \text { and } \varnothing(t) \in \text { Lip } \alpha \\
& =0(n+2) \int_{0}^{\frac{1}{n+2}} t^{\alpha} d t \\
& =0\left(\frac{1}{(n+2)^{\alpha}}\right) ; 0<\alpha \leq 1 \tag{3.2}
\end{align*}
$$

Finally, we consider I_{2}.

$$
\begin{aligned}
\left|I_{2}\right| & =\left|\int_{1 / n+2}^{\pi} \varnothing(t) D(n, t) d t\right| \\
& \leq \int_{1 / n+2}^{\pi}|\varnothing(t)||D(n, t)| d t b y \text { kmma2.2and } \varnothing(t) \in \operatorname{Lip} \alpha \\
& =0\left(\frac{1}{n+2}\right) \int_{1 / n+2}^{\pi} t^{\alpha-2} d t
\end{aligned}
$$

$$
\begin{aligned}
& =\left\{\begin{array}{l}
0\left(\frac{1}{(n+2)}\right)\left(\frac{t^{\alpha-1}}{\alpha-1}\right)_{\frac{1}{n+2}}^{\pi}: 0<\alpha<1 \\
0\left(\frac{1}{n+2}\right)(\log t)_{\frac{1}{n+2}}^{\pi}: \alpha=1
\end{array}\right. \\
& =\left\{\begin{array}{c}
0\left(\frac{1}{(n+2)}\right)\left[\frac{1}{\alpha-1}\left(\frac{1}{(n+2)^{\alpha-1}}-\frac{1}{(\pi)^{1-\alpha}}\right)\right] ; 0<\alpha<1 \\
0\left(\frac{1}{(n+2)}\right)[\log \pi+\log (n+2)] \quad ; \alpha=1
\end{array}\right.
\end{aligned}
$$

Now combining (3.1), (3.2) and (3.3); we get

$$
\begin{aligned}
& \left|T_{n} C_{2}(x)-f(x)\right|=\left\{\begin{array}{c}
0\left(\frac{1}{(n+2)^{\alpha}}\right) ; 0<\alpha<1 \\
0\left(\frac{1}{(n+2)}\right)+0\left(\frac{\log (n+2) \pi}{(n+2)}\right) ; \alpha=1
\end{array}\right. \\
& \left|T_{n} C_{2}(x)-f(x)\right|=\left\{\begin{array}{l}
0 \frac{1}{(n+2)^{\alpha}} ; 0<\alpha<1 \\
0\left(\frac{\log (n+2) \pi e}{(n+2)}\right) ; \alpha=1
\end{array}\right.
\end{aligned}
$$

Thus,

$$
\begin{aligned}
& \left\|T_{n} C_{2}(x)-f(x)\right\|_{\infty}-\pi \leq x \leq \pi \sup _{-\pi}\left|T_{n} C_{2}(x)-f(x)\right| \\
& T_{n} C_{2}(x)-f(x)_{\infty}=\left\{\begin{array}{c}
0 \frac{1}{(n+2)^{\alpha}} ; 0<\alpha<1 \\
\left(\frac{\log (n+2) \pi e}{(n+2)}\right) ; \alpha=1
\end{array}\right.
\end{aligned}
$$

This completes the proof of the theorem.

REFERENCES

1. G. Alexitz, Convergence problems of orthogonal series, pergaman press, London (1961).
2. P. Chandra, on degree of approximation of functions belonging to Lipschitz class, Nanta Math. 8 (1975).
3. A.S.B. Holland, A survey of degree of approximation of continuous functions, SIAM review 23(3), (1981).
4. K. Qureshi, on degree of approximation of a function belonging to the class Lip α, Indian Jour. of pure and Appl. math, 13 (1982)
5. E.C. Titchmarch, Theory of functions, P.143. (1939)
6. A Zygmund, Trigonometric series, $2^{\text {nd }}$ Rev. 1- Cambridge University Press, Cambridge (1968).

Source of Support: Nil, Conflict of interest: None Declared

[Copy right © 2014 This is an Open Access article distributed under the terms of the International Research Journal of Pure Algebra (IRJPA), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.]

