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ABSTRACT 
In the present paper, we will study on the (TnC2) product summability method of Fourier series under the general 
condition. In this paper we will prove a new theorem on the degree of approximation of function belonging to lip α 
class by (Tn C2) means of its Fourier series.  
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1. INTRODUCTION  
 
Let f be 2𝜋𝜋 - periodic and integrable in the Lebesgue sense. The Fourier series associated with f at a point x is given by  
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Definition 1.1: The degree of approximation of a function f: R → R by a trigonometric polynomial Tn of degree n is 
given by  
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Definition 1.2: Let ∑𝑢𝑢𝑛𝑛  be a given infinite series with sequence of its nth partial sum {Sn}. The (C,2) transform is 
defined as the nth partial sum of (C,2) summability and is given by  
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Definition 1.3: A given sequence {Sn} is said to be Taylor summable, if  
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 then the (c, 2) transform of Taylor means defines the (Tn C2) transform of the partial sums {Sn} of the series (1.1). 
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Remark 1.1: We shall use following notations:  
( ) ( ) ( ) ( ) ( )2i t f x t f x t f x∅ = + − − −  
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2. MAIN THEOREM  
 
The degree of approximation of functions belonging to Lip α class by various summability methods of the Fourier 
series of f have been studied by several researchers like Alexits [1], Chandra [2], Holland [3] and Qureshi [4] etc. Here 
in the present paper, we obtain the degree of approximation of function f ∈ Lip α, class by Taylor_Cesàro  product 
simmability method we prove the following :  
 
Theorem 2.1: If f: R → R is 2𝜋𝜋 periodic and lebesgue integrable on [−𝜋𝜋  𝜋𝜋] and f ∈ Lip𝛼𝛼, then the degree of 
approximation of function by Taylor_Cesàro product means of the Fourier series, satisfies for n=0, 1,2 ....,  
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where Tn = an,k is a non- negative, monotonic and non-increasing sequence of real constant such that  
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for the proof of the theorem, the following lemmas are required :  
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Proof: we have  
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Using Jordan's lemma sin , sin 1;
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3. PROOF OF THE THEOREM  
 
Let ( )nS x denote the nth partial sum of the series (1.1) at t = x, then the following Titchmarch [5], we have  
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Now, the Taylor, transform of the sequence {𝜎𝜎𝑛𝑛 } is given by  
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Or  
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Let us consider I1 first  
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Finally, we consider I2.  
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Now combining (3.1), (3.2) and (3.3); we get  
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Thus,  
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This completes the proof of the theorem.  
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