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ABSTRACT 
Some matrix properties were extended to full transformation semigroup to determine linear dependence and 
independence of the elements. 
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1. INTRODUCTION 
 
Let Xn be the set of the first n natural numbers as Xn = {1, 2, 3. . . n} and let Tn denote the full transformation 
semigroup of Xn. The matrix representation of transformation semigroup, S is defined in [2] as follows: 
 

For ,S∈α  let ( )αΨ  = ( )
1,, =jijim  denote the n x n matrix such that { ij

otherwisejim
=

=
)(,1

.,0,

α
. In this work, for each

nT∈α , m (α ) indicates matrix representation of the correspondingα . 
 
For example, let Xn = {1, 2, 3} and nT∈βα ,  where ,11: →α  ,32 →  13 →  is represented by the matrix 

)(αm = 
















010
000
101

 and  ,31: →β  ,12 →  13 →  is represented by the matrix )(βm =


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











001
000
110

.  It is 

worth noting here that the composition of mapping )()( αβαβ mm≡ .  Let nn TS ⊆  be the group of permutations in 
Tn and let Singn = Tn - Sn be the subsemigroup of Tn consisting of the singular transformations. The semigroup Singn is 

idempotent - generated and its idempotent rank is 
2

)1( −nn
 as studied in [3] and [4].  

 
An inverse semigroup S is defined if for each Ss∈  there exists a unique 1s S− ∈ such that ssss 1−=  and 

.111 −−− = ssss   
 
The matrix representation of semigroups defines algebra of semigroups over a set of natural numbers, N as a vector 
space over N. The operation of multiplication is defined satisfying for every nT∈321 ,, ααα  and every Nn∈ : 

(i) m[ ][][)]( 3121321 ααααααα mm +=+ , 

(ii) m[ ][][])( 1312132 ααααααα mm +=+ , 

(iii) m[ )].([])[()]( 1(21212 αααααα nmnmn ==  
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Since the semigroup is associative, then the algebra defined on Tn is associative as  
(iv) )()( 321321 αααααα = . 

 
2. THE DETERMINANT OF Tn 
 
The determinant of Tn, nT∆  was obtained and used in determining the linear dependence and independence of Tn. 
Some of the results obtained are outlined in this section. 
 
Lemma 2.1: The determinant of Tn – Sn is zero. 
 
Proof: Singular transformations leave gaps in between points in Xn, which pave way for zero rows. 
 
Theorem 2.1: nT∆  ∈  [-1, 1]. 
 
Proof: The only entries in the matrix representation of Tn are 0’s and 1’s, which make the determinant zero for any 

nT∈α  having at least a zero row. This follows from lemma 2.1.  The permutation group Sn has determinant 1 so long 

there is no fix point and nXji ∈,  such that ji →  and ij →  only once, otherwise the determinant is -1. Thus the 

determinant of each element nT∈α  was obtained having the range ≤−1 nT∆ 1≤ . 
 
Lemma 2.2: If α  is an idempotent element then ( ) ( )αααα mm ≡⇒≡ 22 . 
 
This lemma simply shows that matrix representation preserves idempotency. It should also be noted that identity 
element in Tn is equivalent to its corresponding matrix identity. 
 
Theorem 2.2: Let m( 1α )  be any element in the matrix representation of the semigroup Tn. Then the following are 
equivalent: 

(i) The determinant of m( 1α ) is not zero, 

(ii) m ( )1α  is non – singular, i.e. the rank ,1 n=α  

(iii) m ( )1α  is invertible, i.e. m ( )1α  has an inverse [m ( )1α ]-1. 
 
Proof: ( ) (( ) :i ii⇒ It is known that the determinant of a matrix is zero if an entire row is zero or two rows (or 
columns) are equal or a row (or a column) is a constant multiple of another row (or column). If any of these three is not 
visible for m ( )1α , then the determinant of m ( )1α ≠  0. This implies that .1 nn TS ⊂∈α  Hence rank .1 n=α  
 
( ) (( ) :ii iii⇒ The rank of 1α  depends on its length of image. If the length of image of 1α  is n, then 1α  is of rank n. 

Since nS∈1α  then rank of 1α  = n and there exist an element S∈−1
1α  such that 1

1
111 αααα −=  and =−1

1α
1

1
−α

1α
1

1
−α . The equivalent matrix representation of 1α  and 1

1
−α  is true. Thus m( 1α ) is invertible. 

 
( ) (( ) :iii i⇒ If the inverse of a matrix exist, it means that it is not a singular transformation. The existence of the 

inverse of 1α  indicates that it is of rank n and the determinant is not zero because there is no zero row (or column) in 

m( 1α ). 
 
3. THE SYMMETRIZATION OF Tn 
 
A matrix M is symmetric if M=MT and only square matrices can be symmetric. The matrix M= [ ]nijm

1
is 

combinatorially symmetric as defined in [5] if mij 0≠  implies mji 0≠ .  A theorem of Frobenius [1] states that every 
finite dimensional square matrix over an arbitrary field can be expressed as the product of two symmetric matrices, one 
of which can be chosen non-singular. This theorem is true for matrix representation of full transformation semigroup. 
The symmetric elements in Tn are combinatorially symmetric. 
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Theorem 3.1: If nT∈α  and  )(α∆  is negative then )(αm is symmetric.  
 
Proof: The determinant of m(α ) is known to be negative by inspection if  there are points nXji ∈,  that interchange 
once as ji →  and ij →  while other elements are fixed.  The interchange in only two points implies that m (α ) is 
symmetric. 
 

For example, the mapping 1α = 







4123
4321

 has a negative determinant by inspection since 31→ , 13 →  and  

2 & 4 are fixed.  
 
It can be verified that every symmetric matrix has negative determinant. 
 
Theorem 3.2: Let m (α ) be an n x n symmetric matrix and let r∆ be the upper left r x r submatrix for all nr ≤≤1 . 

Let r∆
−  denote negative determinant. The upper left r x r determinant of a symmetric matrix alternate sign and hence 

the matrix is negative definite. 
 
Proof:  Theorem3.1 showed that symmetric matrix implies negative determinant. Assuming that 0...0,0 121 ≥∆≥∆≥∆ −r , 

but 0<∆ r  then it shows that at least one of the upper left r x r determinants of a symmetric matrix is negative. 
 

The corresponding )( 1αm  of the example above is given as



















1000
0001
0010
0100

. The upper left r x r determinants are  

1∆  = 0,  2∆  = 0, 
3

∆ = -1 and 4∆  = )( 1α∆ = -1. 
 
4. LINEAR DEPENDENCE AND INDEPENDENCE OF FULL TRANSFORMATION SEMIGROUP 
 
Matrix representation of transformation semigroup linearizes the semigroup. For any nT∈α , α  is linearly dependent 

if the determinant, nT∆  = 0 and linearly independent if 0≠∆ nT . 
 
Dentition: Let nT∈α . A linear transformation is a function α : Xn → Xn with the matrix representation denoted by 
m(α ) and the following properties : 

1. For any nT∈21 ,αα  , then ( )21 αα +m = m( 1α ) + m( 2α ), 

2. For any m(α )∈ ( )αΨ  ,r ∈ R  then m(α r) = rm(α ). 
 
Lemma 4.1: Identity element is the only linearly independent element in the set of idempotents E(Tn), of Tn using the 
corresponding matrix representation. 
 
Proof: The proof follows from the fact that the determinant of singular transformation is zero (Lemma 2.1 and 
Theorem2.2) and the identity map is not singular. 
 
Theorem 4.1: The cardinality of linearly independent elements, nLIT  of Tn is n!. 
 
Proof: The symmetric group Sn ⊆  Tn, is linearly independent since the determinant is not zero. 
 
Theorem 4.2: The cardinality of linearly dependent elements, nLDT  of Tn is nn – n! 
 
Proof: The remaining elements in Tn that are linearly dependent are written as Tn – Sn .  The result follows from 
Lemma 2.1. 
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5. CONCLUSION 
 
The symmetric elements in Tn are combinatorially symmetric and the determinant of Tn, nT∆  ∈  [-1, 1]. 
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