EXTENSION OF MATRIX PROPERTIES TO FULL TRANSFORMATION SEMIGROUP

Adeniji, A. O.*1 and Ogunmolu, 0.0. ${ }^{2}$
Department of Mathematics, Faculty of Science, University of Abuja, Abuja, Nigeria.

(Received On: 03-11-14; Revised \& Accepted On: 16-12-14)

Abstract

Some matrix properties were extended to full transformation semigroup to determine linear dependence and independence of the elements.

Mathematics Subject Classification: 15A15; 20 M20.
Keywords: Full Transformation Semigroup, Linear dependence, Linear Independence and Matrix representation.

1. INTRODUCTION

Let X_{n} be the set of the first n natural numbers as $X_{n}=\{1,2,3 \ldots n\}$ and let T_{n} denote the full transformation semigroup of X_{n}. The matrix representation of transformation semigroup, S is defined in [2] as follows:

For $\alpha \in S$, let $\Psi(\alpha)=\left(m_{i, j}\right)_{i, j=1}$ denote the nxn matrix such that $m_{i, j}=\left\{\begin{array}{l}1, \alpha(j)=i \\ 0, o \text { otherwise. }\end{array}\right.$. In this work, for each $\alpha \in T_{n}, \mathrm{~m}(\alpha)$ indicates matrix representation of the corresponding α.

For example, let $\mathrm{X}_{\mathrm{n}}=\{1,2,3\}$ and $\alpha, \beta \in T_{n}$ where $\alpha: 1 \rightarrow 1,2 \rightarrow 3,3 \rightarrow 1$ is represented by the matrix $m(\alpha)=\left(\begin{array}{lll}1 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 1 & 0\end{array}\right)$ and $\beta: 1 \rightarrow 3,2 \rightarrow 1,3 \rightarrow 1$ is represented by the matrix $m(\beta)=\left(\begin{array}{lll}0 & 1 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0\end{array}\right)$. It is worth noting here that the composition of mapping $\alpha \beta \equiv m(\beta) m(\alpha)$. Let $S_{n} \subseteq T_{n}$ be the group of permutations in T_{n} and let $\operatorname{Sing}_{\mathrm{n}}=\mathrm{T}_{\mathrm{n}}-\mathrm{S}_{\mathrm{n}}$ be the subsemigroup of T_{n} consisting of the singular transformations. The semigroup $\operatorname{Sing}_{\mathrm{n}}$ is idempotent - generated and its idempotent rank is $\frac{n(n-1)}{2}$ as studied in [3] and [4].

An inverse semigroup S is defined if for each $S \in S$ there exists a unique $S^{-1} \in S$ such that $S=S S^{-1} S$ and $S^{-1}=S^{-1} S S^{-1}$.

The matrix representation of semigroups defines algebra of semigroups over a set of natural numbers, N as a vector space over N . The operation of multiplication is defined satisfying for every $\alpha_{1}, \alpha_{2}, \alpha_{3} \in T_{n}$ and every $n \in N$:
(i) $\mathrm{m}\left[\alpha_{1}\left(\alpha_{2}+\alpha_{3}\right)\right]=m\left[\alpha_{1} \alpha_{2}\right]+m\left[\alpha_{1} \alpha_{3}\right]$,
(ii) $\mathrm{m}\left[\left(\alpha_{2}+\alpha_{3}\right) \alpha_{1}\right]=m\left[\alpha_{2} \alpha_{1}\right]+m\left[\alpha_{3} \alpha_{1}\right]$,
(iii) $m\left[n\left(\alpha_{2} \alpha_{1}\right)\right]=m\left[\left(n \alpha_{2}\right) \alpha_{1}\right]=m\left[\alpha_{2(}\left(n \alpha_{1}\right)\right]$.

Since the semigroup is associative, then the algebra defined on T_{n} is associative as
(iv) $\left(\alpha_{1} \alpha_{2}\right) \alpha_{3}=\alpha_{1}\left(\alpha_{2} \alpha_{3}\right)$.

2. THE DETERMINANT OF T_{n}

The determinant of $\mathrm{T}_{\mathrm{n}}, \Delta T_{n}$ was obtained and used in determining the linear dependence and independence of T_{n}. Some of the results obtained are outlined in this section.

Lemma 2.1: The determinant of $T_{n}-S_{n}$ is zero.
Proof: Singular transformations leave gaps in between points in X_{n}, which pave way for zero rows.
Theorem 2.1: $\Delta T_{n} \in[-1,1]$.
Proof: The only entries in the matrix representation of T_{n} are 0 's and 1 's, which make the determinant zero for any $\alpha \in T_{n}$ having at least a zero row. This follows from lemma 2.1. The permutation group S_{n} has determinant 1 so long there is no fix point and $i, j \in X_{n}$ such that $i \rightarrow j$ and $j \rightarrow i$ only once, otherwise the determinant is -1 . Thus the determinant of each element $\alpha \in T_{n}$ was obtained having the range $-1 \leq \Delta T_{n} \leq 1$.

Lemma 2.2: If α is an idempotent element then $\alpha^{2} \equiv m\left(\alpha^{2}\right) \Rightarrow \alpha \equiv m(\alpha)$.
This lemma simply shows that matrix representation preserves idempotency. It should also be noted that identity element in T_{n} is equivalent to its corresponding matrix identity.

Theorem 2.2: Let $m\left(\alpha_{1}\right)$ be any element in the matrix representation of the semigroup T_{n}. Then the following are equivalent:
(i) The determinant of $m\left(\alpha_{1}\right)$ is not zero,
(ii) $m\left(\alpha_{1}\right)$ is non-singular, i.e. the rank $\alpha_{1}=n$,
(iii) $m\left(\alpha_{1}\right)$ is invertible, i.e. $m\left(\alpha_{1}\right)$ has an inverse $\left[m\left(\alpha_{1}\right)\right]^{-1}$.

Proof: (i) \Rightarrow ((ii):It is known that the determinant of a matrix is zero if an entire row is zero or two rows (or columns) are equal or a row (or a column) is a constant multiple of another row (or column). If any of these three is not visible for $\mathrm{m}\left(\alpha_{1}\right)$, then the determinant of $\mathrm{m}\left(\alpha_{1}\right) \neq 0$. This implies that $\alpha_{1} \in S_{n} \subset T_{n}$. Hence rank $\alpha_{1}=n$.
(ii) $\Rightarrow\left((i i i)\right.$: The rank of α_{1} depends on its length of image. If the length of image of α_{1} is n , then α_{1} is of rank n. Since $\alpha_{1} \in S_{n}$ then rank of $\alpha_{1}=\mathrm{n}$ and there exist an element $\alpha_{1}^{-1} \in S$ such that $\alpha_{1}=\alpha_{1} \alpha_{1}^{-1} \alpha_{1}$ and $\alpha_{1}^{-1}=\alpha_{1}^{-1}$ $\alpha_{1} \alpha_{1}^{-1}$. The equivalent matrix representation of α_{1} and α_{1}^{-1} is true. Thus $\mathrm{m}\left(\alpha_{1}\right)$ is invertible.
(iii) $\Rightarrow((i)$: If the inverse of a matrix exist, it means that it is not a singular transformation. The existence of the inverse of α_{1} indicates that it is of rank n and the determinant is not zero because there is no zero row (or column) in $\mathrm{m}\left(\alpha_{1}\right)$.

3. THE SYMMETRIZATION OF T_{n}

A matrix M is symmetric if $\mathrm{M}=\mathrm{M}^{\mathrm{T}}$ and only square matrices can be symmetric. The matrix $\mathrm{M}=\left[m_{i j}\right]_{1}^{n}$ is combinatorially symmetric as defined in [5] if $\mathrm{m}_{\mathrm{ij}} \neq 0$ implies $\mathrm{m}_{\mathrm{ji}} \neq 0$. A theorem of Frobenius [1] states that every finite dimensional square matrix over an arbitrary field can be expressed as the product of two symmetric matrices, one of which can be chosen non-singular. This theorem is true for matrix representation of full transformation semigroup. The symmetric elements in T_{n} are combinatorially symmetric.

Theorem 3.1: If $\alpha \in T_{n}$ and $\Delta(\alpha)$ is negative then $m(\alpha)$ is symmetric.

Proof: The determinant of $\mathrm{m}(\alpha)$ is known to be negative by inspection if there are points $i, j \in X_{n}$ that interchange once as $i \rightarrow j$ and $j \rightarrow i$ while other elements are fixed. The interchange in only two points implies that $\mathrm{m}(\alpha)$ is symmetric.

For example, the mapping $\alpha_{1}=\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 3 & 2 & 1 & 4\end{array}\right)$ has a negative determinant by inspection since $1 \rightarrow 3,3 \rightarrow 1$ and $2 \& 4$ are fixed.

It can be verified that every symmetric matrix has negative determinant.
Theorem 3.2: Let $m(\alpha)$ be an $n \times n$ symmetric matrix and let Δ_{r} be the upper left $r x r$ submatrix for all $1 \leq r \leq n$.
Let ${ }^{-} \Delta_{r}$ denote negative determinant. The upper left $r \times r$ determinant of a symmetric matrix alternate sign and hence the matrix is negative definite.

Proof: Theorem3.1 showed that symmetric matrix implies negative determinant. Assuming that $\Delta_{1} \geq 0, \Delta_{2} \geq 0 . . . \Delta_{r-1} \geq 0$, but $\Delta_{r}<0$ then it shows that at least one of the upper left rx r determinants of a symmetric matrix is negative.

The corresponding $m\left(\alpha_{1}\right)$ of the example above is given as $\left(\begin{array}{cccc}0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1\end{array}\right)$. The upper left $\mathrm{r} x \mathrm{r}$ determinants are $\Delta_{1}=0, \Delta_{2}=0, \Delta_{3}=-1$ and $\Delta_{4}=\Delta\left(\alpha_{1}\right)=-1$.

4. LINEAR DEPENDENCE AND INDEPENDENCE OF FULL TRANSFORMATION SEMIGROUP

Matrix representation of transformation semigroup linearizes the semigroup. For any $\alpha \in T_{n}, \alpha$ is linearly dependent if the determinant, $\Delta T_{n}=0$ and linearly independent if $\Delta T_{n} \neq 0$.

Dentition: Let $\alpha \in T_{n}$. A linear transformation is a function $\alpha: \mathrm{X}_{\mathrm{n}} \rightarrow \mathrm{X}_{\mathrm{n}}$ with the matrix representation denoted by $\mathrm{m}(\alpha)$ and the following properties:

1. For any $\alpha_{1}, \alpha_{2} \in T_{n}$, then $m\left(\alpha_{1}+\alpha_{2}\right)=\mathrm{m}\left(\alpha_{1}\right)+\mathrm{m}\left(\alpha_{2}\right)$,
2. For any $\mathrm{m}(\alpha) \in \Psi(\alpha), \mathrm{r} \in \mathrm{R}$ then $\mathrm{m}\left(\alpha_{\mathrm{r})}=\mathrm{rm}(\alpha)\right.$.

Lemma 4.1: Identity element is the only linearly independent element in the set of idempotents $E\left(T_{n}\right)$, of T_{n} using the corresponding matrix representation.

Proof: The proof follows from the fact that the determinant of singular transformation is zero (Lemma 2.1 and Theorem2.2) and the identity map is not singular.

Theorem 4.1: The cardinality of linearly independent elements, $\left|L I T_{n}\right|$ of T_{n} is $n!$.
Proof: The symmetric group $\mathrm{S}_{\mathrm{n}} \subseteq \mathrm{T}_{\mathrm{n}}$, is linearly independent since the determinant is not zero.
Theorem 4.2: The cardinality of linearly dependent elements, $\left|L D T_{n}\right|$ of T_{n} is $\mathrm{n}^{\mathrm{n}}-\mathrm{n}$!
Proof: The remaining elements in T_{n} that are linearly dependent are written as $T_{n}-S_{n}$. The result follows from Lemma 2.1.

Adeniji, A. O. ${ }^{*^{1}}$ and Ogunmolu, O.O. ${ }^{2} /$

Extension Of Matrix Properties to Full Transformation Semigroup / IRJPA- 4(12), Dec.-2014.

5. CONCLUSION

The symmetric elements in T_{n} are combinatorially symmetric and the determinant of $\mathrm{T}_{\mathrm{n}}, \Delta \mathrm{T}_{n} \in[-1,1]$.

REFERENCES

1. Frobenius, F. G, " \dot{U} ber die mit einer Matrix Vertauschbaren Matrizen(1910)", Ces Abh.' Bd. 3, Springer, (1968), pp. 415 - 427.
2. Ganyushkin, O. and Mazorchuk, V., "Classical Finite Transformation Semigroups", Springer - Verlag London Limited, (2009).
3. Howie, J. M., "The Subsemigroup Generated by the Idempotents of a Full Transformation Semigroup", J. London Math. Soc. 41, (1966), 707-716.
4. Howie, J. M, "Idempotent Generators in Finite Full Transformation Semigroups", Proc. Roy. Soc. Edinburgh Sect. A81, (1978), 317 - 323.
5. John, S. M. "Combinatorially Symmetric Matrices", Linear Algebra and its Applications 8, (1974), 529 - 537.

Source of Support: Nil, Conflict of interest: None Declared

[Copy right © 2014 This is an Open Access article distributed under the terms of the International Research Journal of Pure Algebra (IRJPA), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.]

