PRIME TERNARY SUBSEMIMODULES IN TERNARY SEMIMODULES

Jayprakash Ninu Chaudhari*
Department of Mathematics, M. J. College, Jalgaon-425 002, India.

Hemant Premraj Bendale
Department of Applied Sciences
J. T. Mahajan College of Engineering, Faizpur-425 524, India.
(Received On: 07-11-14; Revised \& Accepted On: 17-01-15)

Abstract

Let M be a ternary semimodule over a ternary semiring R. We introduce the notion of prime ternary subsemimodule of M which is a generalization of a prime subsemimodule introduced by Atani [1] and hence we extend the results of semimodules, ternary semirings and partial semimodules to ternary semimodules over ternary semirings. Prime ternary subsemimodules of a multiplication ternary semimodule over ternary semiring are characterized. Also we prove prime avoidance theorem for ternary semimodules over ternary semirings.

Mathematics Subject Classification: 16Y60, 16 Y99.
Keywords: Ternary semimodule; ternary semiring; prime ternary subsemimodule; subtractive ternary subsemimodule, multiplication ternary semimodule.

1. INTRODUCTION

Dutta and Kar [8], introduced the notion of ternary semimodule over ternary semiring. Characterizations of the partitioning and subtractive ternary subsemimodules of ternary semimodules and direct sum of partitioning ternary subsemimodules of ternary semimodules are obtained by Chaudhari and Bendale [3]. Prime ideals of ternary semirings is studied by Dutta and Kar [7]. In [1], Atani, has extended this work for semimodules over semirings. Prime avoidance theorem for ideals in ternary semirings is given by Chaudhari and Ingale [4]. In this present paper, we introduce the concept of prime ternary subsemimodule and hence we extend some basic results of ternary semirings [7], semimodules over semirings [1] and partial semimodules [10] to ternary semimodules over ternary semirings. Also we prove the prime avoidance theorem for ternary semimodules over ternary semirings.

For the definitions of monoid and semiring we refer [9] and for ternary semiring we refer [6]. All ternary semirings in this paper are commutative with nonzero identity. Denote the set of all non-positive, positive, and non-negative integers respectively by $\mathbb{Z}_{0}^{-}, \mathbb{N}^{2}$ and \mathbb{Z}_{0}^{+}. The set \mathbb{Z}_{0}^{-}is a ternary semiring under usual addition and ternary multiplication of nonpositive integers. An ideal I of a ternary semiring R is called a subtractive ideal ($=k$-ideal) if $a, a+b \in I, b \in R$, then $b \in I$. A proper ideal P of a ternary semiring R is called

1) prime if whenever $I J K \subseteq P$ with I, J, K are ideals of R, then either $I \subseteq P$ or $J \subseteq P$ or $K \subseteq P$;
2) completely prime if whenever $a b c \in P$ where $a, b, c \in R$, then either $a \in P$ or $b \in P$ or $c \in P$.

Since R is commutative ternary semiring, both the concepts prime ideal and completely prime ideal are coincide.
Let R be a ternary semiring. A left ternary R-semimodule is a commutative monoid $(M,+)$ with additive identity 0_{M} for which we have a function $R \times R \times M \rightarrow M$, defined by ($\left.r_{1}, r_{2}, x\right) \mapsto r_{1} r_{2} x$ called ternary scalar multiplication, which satisfies the following conditions for all elements r_{1}, r_{2}, r_{3} and r_{4} of R and all elements x and y of M :

1) $\left(r_{1} r_{2} r_{3}\right) r_{4} x=r_{1}\left(r_{2} r_{3} r_{4}\right) x=r_{1} r_{2}\left(r_{3} r_{4} x\right)$;
2) $r_{1} r_{2}(x+y)=r_{1} r_{2} x+r_{1} r_{2} y$;
3) $r_{1}\left(r_{2}+r_{3}\right) x=r_{1} r_{2} x+r_{1} r_{3} x$;
4) $\left(r_{1}+r_{2}\right) r_{3} x=r_{1} r_{3} x+r_{2} r_{3} x$;
5) $1_{R} 1_{R} x=x$;
6) $r_{1} r_{2} 0_{M}=0_{M}=0_{R} r_{2} x=r_{1} 0_{R} x$.
Corresponding author: Jayprakash Ninu Chaudhari

Throughout this paper, by a ternary R-semimodule we mean a left ternary semimodule over a ternary semiring R.
Clearly, every ternary semiring R is a temary R-semimodule. Also every ternary semiring R is ternary ($\left.\mathbb{Z}_{0}^{-},+, \cdot\right)$ semimodule [3]. A non-empty subset N of a left ternary R-semimodule M is called ternary subsemimodule of M if N is closed under addition and closed under ternary scalar multiplication.

If $\left\{N_{i}: i \in \mathbb{N}\right\}$ is a family of ternary subsemimodules of a ternary R-subsemimodule M, then
i) $\bigcap_{i \in \mathbb{N}} N_{i}$ is a ternary subsemimodule of M and it is the largest ternary subsemimodule of M contained in each N_{i}.
ii) $\sum_{i \in \mathbb{N}} N_{i}=\left\{\sum_{i} x_{i}: x_{i} \in N_{i}\right\}$ is the smallest ternary subsemimodule of M containing each N_{i}.

Union of ternary subsemimodules of M need not be a ternary subsemimodule.
A ternary subsemimodule N of a ternary R-semimodule M is called subtractive ternary subsemimodule (= ternary k subsemimodule) if $x . x+y \in N, y \in M$, then $y \in N$.

If N is a proper ternary subsemimodule of a ternary R-semimodule M and A is a non-empty subset of M, then we denote
i) $(N: m)=\{r \in R: r s m \in N$ for all $s \in R\}$ where $m \in M$.
ii) $(N: A)=\{r \in R: r s A \subseteq N$ for all $s \in R\}$.

Clearly, $(N: m)$ is an ideal of R and $(N: A)=\cap\{(N: m): m \in A\}$. Since intersection of arbitrary family of ideals is again an ideal, $(N: A)$ is an ideal of R and it will be called as associated ideal of N with respect to A.

Theorem 1.1: Let N be a subtractive ternary subsemimodule of a ternary R-semimodule M and A be a non-empty subset of M. Then $(N: A)$ is a subtractive ideal of R.

Proof: Easy.
Definition 1.2: Let A be a non-empty subset of a ternary R-semimodule M. Then the ternary subsemimodule generated by A is the intersection of all ternary subsemimodules of M containing A and it is denoted by $R R A$ i.e. $R R A=\langle A\rangle=\cap$ $\{N: N$ is a ternary subsemimodule of M with $A \subseteq N\}$.

Theorem 1.3: Let M be a ternary R-semimodule. Then for any non-empty subset A of $M, R R A=\left\{\sum_{\text {finite }} r s a: r, s \in\right.$ $R, a \in A$.

Proof: Clearly, $\left\{\sum_{\text {finite }} r s a: r, s \in R, a \in A\right\}$ is a ternary subsemimodule of M containing A. Hence, $R R A \subseteq\left\{\sum_{\text {finite }} r s a: r, s \in R, a \in A\right\}$. Other inclusion is trivial.

2. PRIME TERNARY SUBSEMIMODULES

In this section, we introduce the notion of prime ternary subsemimodule of ternary semimodule over ternary semiring which is a generalization of prime subsemimodule introduced by Atani [1]. Moreover we extend the results of semimodules, ternary semirings and partial semimodules to ternary semimodules over ternary semirings. We begin with key definition of this paper:

Definition 2.1: A proper ternary subsemimodule N of a ternary R-semimodule M is called prime ternary subsemimodule if $r, s \in R, n \in M$ and $r s n \in N$ then $r \in(N: M)$ or $s \in(N: M)$ or $n \in N$.

The following lemma is easy to prove and it will be used in the subsequent theory.
Lemma 2.2: Let N be a proper ternary subsemimodule of a ternary R-semimodule M. Then the following statements are equivalent:
i) $\quad N$ is a prime ternary subsemimodule;
ii) If whenever $I J D \subseteq N$ where I, J are ideals of R and D is a ternary subsemimodule of M, then $I \subseteq(N: M)$ or $J \subseteq(N: M)$ or $D \subseteq N$.

Theorem 2.3: If K is a prime ternary subsemimodule of a ternary R-semimodule M, then ($K: M$) is a prime ideal of R.
Proof: Suppose that K is a prime ternary subsemimodule of M. Let $a, b, c \in R, a b c \in(K: M)$ and $a \notin(K: M), b \notin$ $(K: M)$. Now $a b(c r M)=(a b c) r M \subseteq K$ for all $r \in R$. Since K is a prime ternary subsemimodule, $c r M \subseteq K$ for all $r \in R$. Hence $c \in(K: M)$. Thus, $(K: M)$ is a prime ideal of R.

The following example shows that the converse of the Theorem 2.3 is not true.
Example 2.4: Consider the ternary \mathbb{Z}_{0}^{-}-semimodule $\mathbb{Z}_{0}^{-} \times \mathbb{Z}_{0}^{-}(=M)$ under the ternary scalar multiplication * $:(r, s,(m, n)) \mapsto(r s m, r s n)$. Clearly, $K=\{0\} \times(-8) \mathbb{Z}_{0}^{-} \mathbb{Z}_{0}^{-}$is a ternary subsemimodule of M but it is not a prime ternary subsemimodule of M because $(-2) *(-2) *(0,-2)=((-2)(-2) 0,(-2)(-2)(-2))=(0,-8) \in K$ but $-2 \notin(K: M)$ and $(0,-2) \notin K$. Clearly, $(K: M)=\{0\}$ is a prime ideal of \mathbb{Z}_{0}^{-}.

Definition 2.5: Let M be a ternary R-semimodule. Then M is said to be multiplication ternary semimodule if for each ternary subsemimodule N of M, there exists an ideal I of R such that $N=I R M$.

Lemma 2.6: If M is a multiplication ternary R-semimodule and N is a ternary subsemimodule of M, then $N=(N: M) R M$.
Proof: Since M is a multiplication ternary semimodule, there exists an ideal I of R such that $N=I R M$. Then
$I R M \subseteq N \Rightarrow I \subseteq(N: M)$. So $N=I R M \subseteq(N: M) R M \subseteq N$. Hence $N=(N: M) R M$.
Now we show that the converse of the Theorem 2.3 is true for the multiplication ternary semimodules.
Theorem 2.7: Let N be a ternary subsemimodule of a multiplication ternary R-semimodule M. Then N is a prime ternary subsemimodule of M if and only if $(N: M)$ is a prime ideal of R.

Proof: Proof of the direct part follows from Theorem 2.3. Conversely, suppose that ($N: M$) is a prime ideal of R. Let I, J be ideals of R and K be a ternary subsemimodule of M such that $I J K \subseteq N$. Since M is a multiplication ternary semimodule, there exists an ideal L of R such that $K=L R M$. Now $N \supseteq I J K=I J(L R M)=(I J L) R M$. Hence $I J L \subseteq$ $(N: M)$. Since $(N: M)$ is prime ideal of $R, I \subseteq(N: M)$ or $J \subseteq(N: M)$ or $L \subseteq(N: M)$. Thus $I \subseteq(N: M)$ or $J \subseteq(N: M)$ or $K=L R M \subseteq N$. Hence by Lemma 2.2, N is a prime ternary subsemimodule of M.

Theorem 2.8: A ternary R-semimodule M is a multiplication ternary semimodule if and only if for each $m \in M$, there exists an ideal I of R such that $R R m=I R M$.

Proof: Suppose M is a multiplication ternary R-semimodule. Let $m \in M$. Then $R R m$ is a ternary subsemimodule of M. Hence there exists an ideal I of R such that $R R m=I R M$. Conversely, suppose that for each $m \in M$, there exists an ideal I of R such that $R R m=I R M$. Let N be a ternary subsemimodule of M. Then for $n \in N$, there exists an ideal I_{n} of R such that $R R n=I_{n} R M$. Denote $I=\sum_{n \in N} I_{n}$. Then I is an ideal of R. Now $N=\sum_{n \in N} R R n=\sum_{n \in N} I_{n} R M=$ $\left(\sum_{n \in N} I_{n}\right) R M=I R M$. Hence M is a multiplication ternary R-semimodule.

Definition 2.9: Let N_{1}, N_{2}, N_{3} be ternary subsemimodules of a multiplication ternary R-semimodule M such that $N_{1}=I R M, N_{2}=J R M$ and $N_{3}=K R M$ for some ideals I, J, K of R. Then the ternary multiplication of N_{1}, N_{2} and N_{3} is defined as $N_{1} N_{2} N_{3}=(I R M)(J R M)(K R M)=(I J K) R M$.

Definition 2.10: Let M be a multiplication ternary R-semimodule and $m_{1}, m_{2}, m_{3} \in M$ such that $R R m_{1}=$ $I_{1} R M, R R m_{2}=I_{2} R M$ and $R R m_{3}=I_{3} R M$ for some ideals I_{1}, I_{2} and I_{3} of R. Then the multiplication of m_{1}, m_{2} and m_{3} is defined as $m_{1} m_{2} m_{3}=\left(I_{1} R M\right)\left(I_{2} R M\right)\left(I_{3} R M\right)=\left(I_{1} I_{2} I_{3}\right) R M$.

Now the following theorem gives a characterization of prime ternary subsemimodule of a multiplication ternary R-semimodule M.

Theorem 2.11: Let N be a proper ternary subsemimodule of a multiplication ternary R-semimodule M. Then the following statements are equivalent :

1) N is a prime ternary subsemimodule;
2) For any ternary subsemimodules U, V and W of $M, U V W \subseteq N$ implies $U \subseteq N$ or $V \subseteq N$ or $W \subseteq N$;
3) For any $m_{1}, m_{2}, m_{3} \in M, m_{1} m_{2} m_{3} \subseteq N$ implies $m_{1} \in N$ or $m_{2} \in N$ or $m_{3} \in N$.

Proof: (1) \Rightarrow (2): Suppose that N is a prime ternary subsemimodule of M and let U, V, W be ternary subsemimodules of M such that $U V W \subseteq N$. Since M is a multiplication ternary semimodule, there exist ideals I, J and K of R such that $U=I R M, V=J R M$ and $W=K R M$. Now $(I J K) R M=U V W \subseteq N \Rightarrow I J K \subseteq(N: M)$. By Theorem 2.3, $(N: M)$ is a prime ideal of R. So $I \subseteq(N: M)$ or $J \subseteq(N: M)$ or $K \subseteq(N: M)$. Hence $U=I R M \subseteq N$ or $V=J R M \subseteq N$ or $W=K R M \subseteq N$.
(2) \Rightarrow (3): Suppose for any ternary subsemimodules U, V and W of $M, U V W \subseteq N$ implies $U \subseteq N$ or $V \subseteq N$ or $W \subseteq N$. Let $m_{1}, m_{2}, m_{3} \in M$ such that $m_{1} m_{2} m_{3} \subseteq N$. Since M is a multiplication ternary semimodule, there exist ideals I, J and K of R such that $R R m_{1}=I R M, R R m_{2}=J R M$ and $R R m_{3}=K R M$. Now $\left(R R m_{1}\right)\left(R R m_{2}\right)\left(R R m_{3}\right)=m_{1} m_{2} m_{3} \subseteq$ $N \Rightarrow R R m_{1} \subseteq N$ or $R R m_{2} \subseteq N$ or $R R m_{3} \subseteq N$. Hence $m_{1} \in N$ or $m_{2} \in N$ or $m_{3} \in N$.
(3) $\Rightarrow \mathbf{(1) : ~ S u p p o s e ~ f o r ~ a n y ~} m_{1}, m_{2}, m_{3} \in M, m_{1} m_{2} m_{3} \subseteq N$ implies $m_{1} \in N$ or $m_{2} \in N$ or $m_{3} \in N$. We prove ($N: M$) is a prime ideal of R. Let I, J and K be ideals of R such that $I J K \subseteq(N: M)$. Then (IJK)RM $\subseteq N$. Suppose that $I \nsubseteq(N: M), J \nsubseteq(N: M)$ and $K \nsubseteq(N: M)$. Therefore $I R M \nsubseteq N, J R M \nsubseteq N$ and $K R M \nsubseteq N$. Choose $i \in I, j \in J, k \in$ $K, r_{1}, r_{2}, r_{3} \in R$ and $m_{1}, m_{2}, m_{3} \in M$ such that $i r_{1} m_{1} \in I R M \backslash N, j r_{2} m_{2} \in J R M \backslash N$ and $k r_{3} m_{3} \in K R M \backslash N \ldots$ (*). Now $\left(i r_{1} m_{1}\right)\left(j r_{2} m_{2}\right)\left(k r_{3} m_{3}\right) \subseteq(I R M)(J R M)(K R M)=(I J K) R M \subseteq N \Rightarrow i r_{1} m_{1} \in N$ or $j r_{2} m_{2} \in N$ or $k r_{3} m_{3} \in N$, a contradiction to (*). Hence ($N: M$) is a prime ideal of R. Therefore by Theorem 2.7, N is a prime ternary subsemimodule of M.

Theorem 2.12: Every prime ternary subsemimodule N of a multiplication ternary R-semimodule M contains a minimal prime ternary subsemimodule.

Proof: Take $\mathcal{A}=\{H: H$ is a prime ternary subsemimodule of $M, H \subseteq N\}$. Since $N \in \mathcal{A},(\mathcal{A}, \subseteq)$ is a non-empty partially ordered set. Let $\left\{H_{i}: i \in \mathbb{N}\right\}$ be a descending chain of ternary subsemimodules of M such that $H_{i} \subseteq N$ for all $i \in \mathbb{N}$ and let $H^{\prime}=\bigcap_{i \in \mathbb{N}} H_{i}$. Then H^{\prime} is a ternary subsemimodule of M and $H^{\prime} \subseteq N$. Now we prove H^{\prime} is prime ternary subsemimodule of M. Let $m_{1}, m_{2}, m_{3} \in M$ such that $m_{1} m_{2} m_{3} \subseteq H^{\prime}$ and $m_{1} \notin H^{\prime}, m_{2} \notin H^{\prime}$. Then $m_{1} \notin H_{k}$ for some $k \in \mathbb{N}$ and $m_{2} \notin H_{l}$ for some $l \in \mathbb{N}$. Take $n=\max \{k, l\} \Rightarrow m_{1}, m_{2} \notin H_{n} \Rightarrow m_{3} \in H_{n}$, since $m_{1} m_{2} m_{3} \subseteq H^{\prime} \subseteq H_{n}$ and H_{n} is a prime ternary subsemimodule and by Theorem 2.11. For any $i \leq n, H_{i} \supseteq H_{n}$ and hence $m_{3} \in H_{i} \ldots$ (1). For any $i>n, H_{i} \subseteq H_{n} \Rightarrow m_{1}, m_{2} \notin H_{i}$, and hence $m_{3} \in H_{i}$ for all $i>n \ldots$ (2). From (1) and (2), we get $m_{3} \in H^{\prime}$. Hence $H^{\prime} \in \mathcal{A}$. Then by Zorn's Lemma, \mathcal{A} has a minimal element. Hence the theorem.

3. PRIME AVOIDANCE THEOREM

In this section, we prove prime avoidance theorem for ternary semimodules over ternary semirings.
Definition 3.1: The k-closure of a ternary subsemimodule N of a ternary R-semimodule M is defined by $\bar{N}=\left\{x \in M: x+a_{1}=a_{2}\right.$ for some $\left.a_{1}, a_{2} \in N\right\}$.

Proposition 3.2: Let N, K be ternary subsemimodules of a ternary R-semimodule M. Then

1) \bar{N} is a ternary subsemimodule of M containing N;
2) $\quad N$ is a ternary k-subsemimodule of $M \Leftrightarrow \bar{N}=N$;
3) $\overline{\bar{N}}=\bar{N}$;
4) $N \subseteq K \Rightarrow \bar{N} \subseteq \bar{K}$;
5) $\overline{N \cap K} \subseteq \bar{N} \cap \bar{K}$.

Proof: Easy.
Consider the ternary semiring $R=\left(\mathbb{Z}^{-} \cup\{-\infty\}\right.$, $\left.\max , \cdot\right)[5]$. Then $M=\left(\mathbb{Z}^{-} \cup\{-\infty\}, \max \right)$ is a ternary R-semimodule. For $n \in \mathbb{Z}^{-}$, we denote $T_{n}=\left\{r \in \mathbb{Z}^{-}: r \leq n\right\} \cup\{-\infty\}$, is an ideal of R [5]. Hence T_{n} is a ternary subsemimodule of M. The following example shows that equality in Proposition 3.2 (5) may not hold.

Example 3.3: Consider the ternary semiring $R=\left(\mathbb{Z}^{-} \cup\{-\infty\}, \max , \cdot\right)$ and the ternary subsemimodules $N=\{-4\} \cup$ $T_{-8}, K=\{-6,-7\} \cup T_{-10}$ of the ternary R-semimodule $M=\left(\mathbb{Z}^{-} \cup\{-\infty\}\right.$, $\left.\max \right)$. Then $N \cap K=T_{-10}$ is a subtractive ternary subsemimodule of M and hence by Proposition 3.2(2), $\overline{N \cap K}=T_{-10}$. But $\bar{N}=T_{-4}$ and $\bar{K}=T_{-6}$. Hence $\bar{N} \cap \bar{K}=T_{-6}$. Now $\overline{N \cap K} \subsetneq \bar{N} \cap \bar{K}$.

Theorem 3.4: Let L be a ternary subsemimodule of a ternary R-semimodule M. If L_{1}, L_{2} are ternary k-subsemimodules of M such that $L \subseteq L_{1} \cup L_{2}$, then $L \subseteq L_{1}$ or $L \subseteq L_{2}$.

Proof: Suppose that $L \subseteq L_{1} \cup L_{2}, L \nsubseteq L_{1}$ and $L \nsubseteq L_{2}$. Choose $l_{1} \in L \backslash L_{1}$ and $l_{2} \in L \backslash L_{2}$. Since $L \subseteq L_{1} \cup L_{2}, l_{1} \in L_{2}$ and $l_{2} \in L_{1}$. Now $l_{1}+l_{2} \in L_{1}$ or $l_{1}+l_{2} \in L_{2}$. Since L_{1}, L_{2} are ternary k-subsemimodules, either $l_{1} \in L_{1}$ or $l_{2} \in L_{2}$, a contradiction. Hence $L \subseteq L_{1}$ or $L \subseteq L_{2}$.

Definition 3.5: Let $L, L_{1}, L_{2}, L_{3}, \ldots, L_{n}$ be ternary subsemimodules of ternary R-semimodule M and $L \subseteq L_{1} \cup L_{2} \cup$ $L_{3} \cup \ldots \cup L_{n}$. Then $L_{1} \cup L_{2} \cup L_{3} \cup \ldots \cup L_{n}$ is said to be efficient covering of L if $L \nsubseteq \bigcup_{\substack{i=1, i \neq j}}^{n} L_{i}$ for any $j \in\{1,2,3, \ldots, n\}$.

Definition 3.6: Let $L, L_{1}, L_{2}, L_{3}, \ldots, L_{n}$ be ternary subsemimodules of ternary R-semimodule M and $L=L_{1} \cup L_{2} \cup$ $L_{3} \cup \ldots \cup L_{n}$. Then $L_{1} \cup L_{2} \cup L_{3} \cup \ldots \cup L_{n}$ is said to be efficient union of L if $L \neq \bigcup_{i=1,}^{n} L_{i}$ for any $j \in\{1,2,3, \ldots, n\}$.

Lemma 3.7: Let L be a ternary subsemimodule of a ternary R-semimodule M and $L_{1}, L_{2}, L_{3}, \ldots, L_{n}$ be ternary k subsemimodules of M. If $L=L_{1} \cup L_{2} \cup L_{3} \cup \ldots \cup L_{n}$ is an efficient union, then $\bigcap_{i=1}^{n} L_{i}=\bigcap_{\substack{i=1 \\ i \neq j}}^{n} L_{i}$ for all $1 \leq j \leq n$.

Proof: Let $1 \leq j \leq n$ and let $x \in \bigcap_{\substack{i=1 \\ i \neq j}}^{n} L_{i}$. Since $L=L_{1} \cup L_{2} \cup L_{3} \cup \ldots \cup L_{n}$ is an efficient union, $L \nsubseteq \bigcup_{\substack{i=1,1 \\ i \neq j}}^{n} L_{i}$. So there exists $y \in L$ such that $y \notin \bigcup_{\substack{i=1 \\ i \neq j}}^{n} L_{i} \ldots$ (1). Hence $y \in L_{j}$. Now $x+y \in L=L_{1} \cup L_{2} \cup L_{3} \cup \ldots \cup L_{n}$. Suppose that $x+y \in L_{i}$ for some $i \neq j$. Since $x \in L_{i}$ and L_{j} is a ternary k-subsemimodule, $y \in L_{i}$, a contradiction to (1). Hence $x+y \in L_{j}$. Since $y \in L_{j}$ and L_{j} is a ternary k-subsemimodule, $x \in L_{j}$. Hence $x \in \bigcap_{i=1}^{n} L_{i}$. Now $\bigcap_{\substack{i=1 \\ i \neq j}}^{n} L_{i} \subseteq \bigcap_{i=1}^{n} L_{i}$. Other inclusion is trivial.

The following theorem is essential to prove for prime avoidance theorem.
Theorem 3.8: Let $L \subseteq L_{1} \cup L_{2} \cup L_{3} \cup \ldots \cup L_{n}$ be an efficient covering consisting of ternary k-subsemimodules of a ternary R-semimodule M where $n>2$. If $\left(L_{j}: M\right) \nsubseteq\left(L_{k}: M\right)$ for any $k \neq j$, then L_{k} is not a prime ternary subsemimodule of M.

Proof: Since $L \subseteq L_{1} \cup L_{2} \cup L_{3} \cup \ldots \cup L_{n}$ is an efficient covering, $L=\left(L \cap L_{1}\right) \cup\left(L \cap L_{2}\right) \cup\left(L \cap L_{3}\right) \cup \ldots \cup\left(L \cap L_{n}\right)$ is an efficient union. Then by Lemma 3.7, $\bigcap_{\substack{j=1 \\ j \neq k}}^{n}\left(L \cap L_{j}\right)=\bigcap_{j=1}^{n}\left(L \cap L_{j}\right) \subseteq L \cap L_{k} \ldots$ (1). Since $L \nsubseteq L_{k}$, there exists $l_{k} \in L \backslash L_{k}$. Suppose L_{k} is a prime ternary subsemimodule of M. Then $\left(L_{k}: M\right)$ is a prime ideal of R. Since $\left(L_{j}: M\right) \nsubseteq$ $\left(L_{k}: M\right)$, there exists $s_{j} \in\left(L_{j}: M\right) \backslash\left(L_{k}: M\right)$. Then $s=s_{1}^{n+1} s_{2} \ldots s_{k-1} s_{k+1} \ldots s_{n} \in\left(L_{j}: M\right) \backslash\left(L_{k}: M\right)$. Hence $s r l_{k} \in L \cap L_{j}$ for all $j \neq k$, for all $r \in R$ and $s r^{\prime} l_{k} \notin L \cap L_{k}$ for some $r^{\prime} \in R$. So $\bigcap_{\substack{j=1 \\ j \neq k}}^{n}\left(L \cap L_{j}\right) \nsubseteq L \cap L_{k}$, a contradiction to (1). Thus, L_{k} is not a prime ternary subsemimodule.

Now we prove prime avoidance theorem for ternary semimodules over ternary semirings.
Theorem 3.9: (Prime Avoidance Theorem) Let L be a ternary subsemimodule of a ternary R-semimodule M and $L_{1}, L_{2}, L_{3}, \ldots, L_{n}$ be ternary k-subsemimodules of M such that atmost two of L_{i} 's are not prime and for any $j \neq$ $k,\left(L_{j}: M\right) \nsubseteq\left(L_{k}: M\right)$. If $L \subseteq L_{1} \cup L_{2} \cup L_{3} \cup \ldots \cup L_{n}$, then $L \subseteq L_{k}$ for some k.

Proof: Let $L \subseteq L_{i_{1}} \cup L_{i_{2}} \cup L_{i_{3}} \cup \ldots \cup L_{i_{m}}$ be the efficient covering where $i_{1}, i_{2}, i_{3}, \ldots, i_{m} \in\{1,2,3, \ldots, n\}$ and $1 \leq m \leq n$. Suppose $m=2$. Then $L \subseteq L_{i_{1}} \cup L_{i_{2}}$ is an efficient covering...(1). By Theorem 3.4, $L \subseteq L_{i_{1}}$ or $L \subseteq L_{i_{2}}$, a contradiction to (1). Suppose that $m \geq 3$. Then by assumption, there exists at least one prime ternary subsemimodule $L_{i_{j}}$ for some i_{j} which is impossible by Theorem 3.8. Hence $m=1$. Now $L \subseteq L_{k}$ for some $k \in\{1,2,3, \ldots, n\}$.

Theorem 3.10: Let P be a prime ternary subsemimodule and $N_{1}, N_{2}, N_{3}, \ldots, N_{n}$ be ternary k-subsemimodules of a multiplication ternary R-semimodule M. Then $\bigcap_{i=1}^{n} N_{i} \subseteq P$ if and only if $N_{i} \subseteq P$ for some $j \in\{1,2,3, \ldots, n\}$.

Proof: Suppose that $\bigcap_{i=1}^{n} N_{i} \subseteq P$. Then $\left(\bigcap_{i=1}^{n} N_{i}: M\right) \subseteq(P: M) \Rightarrow \bigcap_{i=1}^{n}\left(N_{i}: M\right) \subseteq(P: M)$. Claim: $\left(N_{j}: M\right) \subseteq(P: M)$ for some j. Suppose that $\left(N_{j}: M\right) \nsubseteq(P: M)$ for all j. So there exists $s_{j} \in\left(N_{j}: M\right)$ such that $s_{j} \notin(P: M)$ for all $j \ldots$ (1). Then $s=s_{1}^{n} s_{2} s_{3} \ldots s_{n} \in\left(N_{j}: M\right)$ for all $j \Rightarrow s_{1}^{n} s_{2} s_{3} \ldots s_{n}=s \in \bigcap_{j=1}^{n}\left(N_{j}: M\right) \subseteq(P: M) \ldots$ (2). Since P is prime ternary subsemimodule, by Theorem 2.3, ($P: M$) is prime ideal of R. Hence by (2), $s_{j} \in(P: M)$ for some j, a contradiction to (1). Now $\left(N_{j}: M\right) \subseteq(P: M)$ for some j. Hence $\left(N_{j}: M\right) R M \subseteq(P: M) R M \Rightarrow N_{j} \subseteq P$, since by Lemma 2.6. Converse is trivial.

REFERENCES

1. R. E. Atani, Prime subsemimodules of semimodules, International Journal of Algebra, Vol.4, 2010, no.26, 1299-1306.
2. S. E. Atani, The ideal theory in quotients of commutative semirings; Vol. 42, (62), (2007), 301 - 308.
3. J. N. Chaudhari and H. P. Bendale, On partitioning and subtractive ternary subsemimodules of ternary semimodules over ternary semirings; International Journal of Algebra, Vol.6, 2012, no.4, 163-172.
4. J. N. Chaudhari and K. J. Ingale, Prime avoidance theorem in ternary semirings; Journal of Advanced Research in Pure Mathematics; Vol. 5, Issue. 1(2013), pp. 80-85.
5. J. N. Chaudhari and K. J. Ingale, Subtractive extension of ideals in ternary semirings; Thai J. Math. (To appear).
6. T. K. Dutta and S. Kar, On regular ternary semirings; Advances in Algebra, Proceedings of the ICM satellite conference in Algebra and related topics; World Scientific (2003), 343-355.
7. T. K. Dutta and S. Kar, Prime ideals and prime radical of ternary semirings; Bull. Cal. Math. Soc. 97, (5) (2005), 445-454.
8. T. K. Dutta and S. Kar, On the Jacobson radical of ternary semirings; Southeast Asian Bull. of Maths., 28(2004), 1-13.
9. J. S. Golan, Semiring and their Applications, Kluwer Academic publisher Dordrecht, 1999.
10. P. V. Srinivasa Rao, On prime subsemimodules of partial semimodules; International Journal of Computational Cognition, Vol.9, (2011) no.1, 64-68.

Source of Support: Nil, Conflict of interest: None Declared

[Copy right © 2014 This is an Open Access article distributed under the terms of the International Research Journal of Pure Algebra (IRJPA), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.]

