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ABSTRACT 
In this paper, we prove expansion mapping theorems in metric spaces the expansion  factor being controlled by a non-
decreasing function using the concept of  compatible maps, weakly reciprocal continuity, R- weakly commuting of  type 
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1. INTRODUCTION AND PRELIMINARIES 
  
In 1922, Banach proved the Banach contraction principle. Many authors have extended, generalized the Banach 
contraction Principle in different ways. In 1992, Daffer and Kaneko [2] proved a fixed point theorem for expansive 
mappings. 
 
Definition 1.1: Let f be a self -mapping of   a metric space (X, d). Then f is said to be expansive if there exists a real 
number h > 1 such that 
                                                           d(f x,  f y)  ≥  h d(x, y)  for all x, y ∈ X.                                                             (1.1.1) 
 
In 1997, Alber and Gurre - Delabrire [1] introduced the notion of φ- weak contraction as follows. 
 
Definition 1.2: [1] Let f  be a self - mapping of   a metric space (X, d). Then f  is said to be φ - weak contraction if  
there exists a continuous mapping  φ : [0,∞) → [0,∞) with φ(0) = 0 and φ(t) < t  for all t > 0 such that 
                                                     d ( f (x),  f (y)) ≤ d(x, y) - φ(d(x, y)) for all x, y ∈ X.                                               (1.2.1) 
 
Recently S. M. Kang, M. Kumar, P.Kumar and S. Kumar [5] introduced φ-weakly expansive mappings in metric spaces 
as follows. 
 
Definition 1.3: [5] Let f be a self -mapping of a metric space (X, d). Then f is said to be φ - weakly expansive if there 
exists a continuous mapping φ: [0, ∞) → [0, ∞) with φ (0) = 0 and φ (t) > t   for all t > 0 such that 
                                                 d ( f x,  f y) ≥  d(x, y) + φ(d(x, y)) for all x, y ∈  X.                                                      (1.3.1) 

 
Definition 1.4: [5] Let f   and g be two self- mappings of a metric space (X, d). Then f is said to be φ - weakly 
expansive with respect to g: X → X if   there exists a continuous mapping φ: [0,∞) → [0,∞) with φ(0) = 0 and φ(t) > t  
for all t > 0 such that 
                                                  d( f x,  f y) ≥ d(gx, gy) + φ(d(gx, gy))  for all x, y ∈  X.                                              (1.4.1) 
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In 1986, Jungck [4] defined the concept of compatible mappings. 
 
Definition 1.5: [4] A pair (f, g) of self-mappings of   a metric space (X, d) is said to be compatible if  
 lim
𝑛𝑛→∞

 d(fgxn, g fxn) = 0, whenever {xn}is a sequence in X such that 
 lim
𝑛𝑛→∞

  f (xn) = lim
𝑛𝑛→∞

g(xn) = z  for some z ∈  X. 
 
In 1994, Pant [8] introduced the notion of   point wise R- weak commutativity in metric spaces. 
 
Definition 1.6: [8] Let f and g be two self -mappings of a metric space (X, d). Then f and g are called R-weakly 
commuting on X if there exists R > 0 such that  
                                                               d ( fgx, gf x) ≤ Rd( f x, gx)    for all x ∈  X.                                                   (1.6.1) 

 
It is obvious that R-weakly commuting mappings commute at their coincidence points and hence R-weak 
commutativity is equivalent to commutativity at coincidence points. 
 
In 1997, Pathak et al. [12] generalized the notion of R-weakly commuting mappings to R-weakly commuting mappings 
of   type (Ag) and of   type (Af ). 
 
Definition 1.7: [12] Let f and g be two self -mappings of a metric space (X, d). Then f  and g are called R-weakly 
commuting of type (Ag) if there exists R > 0 such that  

d( f fx, g f x) ≤ Rd( f x, gx)  for all x ∈  X. 
 
Similarly, the two self  -mappings f  and g are called R-weakly commuting of  type (Af ) if there exists R > 0 such that 
d(fgx, ggx) ≤ Rd(fx, gx)  for all x ∈  X. 
 
Definition 1.8: [12] Let f and g be two self -mappings of a metric space (X, d). Then f and g are called R -weakly 
commuting of type (P) if there exists R > 0 such that 

d(ffx, ggx) ≤ Rd(fx, gx)  for all x ∈  X. 
 
In 1998, [10] introduced a new continuity condition, known as reciprocal continuity and obtained a common fixed point 
theorem by using the compatibility in a metric space. The notion of   reciprocal continuity is weaker than the continuity 
of   one of   the mappings. 
 
Definition 1.9: [10] Two self mappings f and g of a metric space (X, d) are called reciprocally continuous if   
lim
𝑛𝑛→∞

  fgxn =  fz and     lim
𝑛𝑛→∞

 gfxn = gz ,  whenever {xn} is a sequence in X such that lim
𝑛𝑛→∞

 fxn = lim
𝑛𝑛→∞

 gxn = z  for some z in X. 
 
In 2011, Pant et al. [11] generalized the notion of reciprocal continuity to weak reciprocal continuity as follows. 
 
Definition 1.10: [11] Two self mappings f and g of a metric space (X, d) are called weakly reciprocally continuous if 
fgxn =  fz or lim

𝑛𝑛→∞
gf  xn = gz whenever {xn} is a sequence in X  such that 

lim
𝑛𝑛→∞

 fxn =  lim
𝑛𝑛→∞

gxn = z  for some z in X. 
 
In 1992, Daffer and Kaneko [2] proved the following fixed point theorem. 
 
Theorem 1.11: [2] Let (X, d) be a complete metric space. Let f  be a surjective  self map and  g be an injective self map 
of  X which satisfy  the following conditions: There exists a number q > 1 such that 

d (f x,  f y) ≥ q d(gx, gy)  for each x, y in X, 
then  f and g have a unique common fixed point. 
 
In 1993, B. E. Rhoades extended Theorem 1.11 to compatible mappings as follows. 
 
Theorem 1.12: [13] Let (X, d) be a complete metric space.  Let f and g be compatible self maps of X satisfying 
(i)    gX ⊆  f  X; 
(ii)   there exists q > 1 such that d(f x,  f y) ≥ q d(gx, gy)  for each x, y in X,  and 
(iii)  f  is continuous. 
 
Then f and g have a unique common fixed point. 
 
In 2008, Kumar [6] generalized Theorem 1.12 to weakly compatible maps as follows. 
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Theorem 1.13: [6] Let (X, d) be a complete metric space.  Let f and g be weakly compatible self maps of X satisfying 

(i) gX ⊆ f X; 
(ii) there exists q > 1 such that d( fx,  fy) ≥ q d(gx, gy)  for all x, y∈ X. 

 
If one of the subspaces gX or fX is complete, then f   and g have a unique common fixed point. 
 
In 2012, S. Manro and P. Kumar [7] proved the following theorem, using the concept of compatibility and weak 
reciprocal continuity in complete metric spaces. 
 
Theorem 1.14: [7] Let f and g be two weakly reciprocally continuous self mappings of a complete metric space (X, d) 
satisfying 

(i) gX ⊆  f X; 
(ii) there exists q > 1 such that d(f x,  fy) ≥ q d (gx, gy)  for all x, y ∈  X, 

 
If f and g are either compatible or R- weakly commuting of type (Ag) or, R- weakly  commuting of type (Af) or          R- 
weakly commuting of type (P), then  f  and g have a unique common  fixed point. 
 
Recently S. M. Kang et al. [5] generalized and extended Theorem 1.4 for φ- weakly expansive mappings as follows. 
 
Theorem 1.15: [5]   Let f   and g be two weakly reciprocally continuous self mappings of a complete metric space     
(X, d) satisfying 

(i) gX ⊆  f X; 
(ii) there exists a continuous mapping φ : [0,∞) → [0,∞) with  φ(0) = 0 and φ(t) > t for all t > 0 such that 

d( f x,  f y) ≥ d (gx, gy) + φ(d(gx, gy))  for all x, y ∈  X, and  if f and g are compatible, then  f  and g  have a 
unique common fixed point. 

 
Theorem 1.16: [5]   Let f   and g be two weakly reciprocally continuous self mappings of a complete metric space      
(X, d) satisfying 

(i) gX ⊆  f X; 
(ii) there exists a continuous mapping φ : [0,∞) → [0,∞)  with φ(0) = 0 and  φ(t) > t  f  or all t > 0 such that        

d(f x,  fy) ≥ d (gx, gy) + φ(d(gx, gy))  for all x, y∈ X, and if  f  and g are R - weakly commuting of  type (Ag) or, 
R- weakly  commuting of type (Af ) or  R - weakly commuting of type (P), then f and g have a unique common 
fixed point. 

 
We observe that in Theorem 1.15 and Theorem 1.16 the condition ‘φ(t) > 0 for all t > 0’ is unnecessary. Further, we 
obtain common fixed point theorems when φ is non-decreasing (but not necessarily continuous). 
 
An example also is provided in support of our result. 
 
2. MAIN RESULTS 

 
We begin with some definitions. 
 
Definition 2.1: A function φ: [0, ∞) → [0, ∞) is called a control function  if   

(i) φ is non-decreasing and 
(ii) φ(t) = 0 if   and only if   t = 0. 

 
Definition 2.2: Suppose (X, d) is a metric space and f, g are two self maps on X.  Suppose φ is a control function such 
that 

d(f x,  f y) ≥ d(gx, gy) + φ(d(gx, gy)) for all x, y ∈ X. 
 
Then f is said to be expanding with respect to g with expansion factor φ (d (gx, gy)) for all x, y ∈ X. 
 
Now we obtain conditions for the existence of a common fixed point for two self maps f and g on a complete metric 
space, when f   is expanding with respect to g, the control function being φ. 
 
The exact statement of   the result is as follows. 
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Theorem 2.3: Let f and g be two weakly reciprocally continuous self mappings of a complete metric space (X, d) 
satisfying 

(i) g(X) ⊆  f (X); 
(ii) there exists a mapping φ : [0,∞) → [0,∞) such that  φ is non-decreasing  and   φ(t) = 0  if  and only if  t = 0 and 

d( f x,  fy) ≥ d(gx, gy) + φ(d(gx, gy))    for all x, y ∈ X.                                                                                 (2.3.1) 
 
If f and g are compatible, 
 
Then  f  and g have a unique common fixed point. 
 
Proof: Let x0 ∈ X. 
 
Since g(X)⊆f (X), we can choose x1 ∈ X such that gx0 =  fx1. 
 
In general we can choose {xn} in X such that gxn = fxn+1   for n = 0, 1, 2, ... . 
 
Write yn = gxn =  f  xn+1                                                                                                                                                                                                                               (2.3.2) 
 
If   yn = yn+1  for some n ∈ N, then we have gxn = gxn+1 so that gxn =  fxn+1 = gxn+1. 
 
This implies that xn+1 is a coincidence point of f and g. 
 
Since  f  and g are compatible, we have  fgxn+1 = gfxn+1 so that  fgxn = ggxn                                                               (2.3.3) 
 
and hence gxn is a coincidence point of  f  and  g. 
 
Now, from (2.3.1), we have 
d (fxn+1,  fgxn) ≥ d(gxn+1, ggxn) + φ(d(gxn+1, ggxn))                                                                                                      (2.3.4) 
                       ≥ d(fxn+1,  fgxn) + φ(d(fxn+1, ggxn))                                                                                                       (2.3.5) 
                    0 ≥ φ(d( fxn+1, ggxn)) 

     0 ≥ φ(d( fxn+1,  f gxn)) 
     0 = d(fxn+1,  f gxn) 
     0 = d(gxn,  f gxn) 

 
That implies gxn =  fgxn . 
 
Therefore gxn is a fixed point of f. 
 
 From (2.3.5) and (2.3.3), we have 
                 0 ≥ φ(d(gxn+1, ggxn)) 
 
therefore 0 ≥ φ(d( fxn+1,  fgxn)) 
 
therefore 0 = d( fxn+1,  fgxn)) 
 
This implies f xn+1 = fgxn 

          fxn+1 = ggxn 
           gxn = ggxn and hence gxn is a fixed point of  g. 

 
Therefore gxn is a common fixed point of f and g. 
 
Hence we may assume that without loss of generality that yn ≠ yn+1 for all n ∈ N  
 
so that d(yn, yn+1) > 0  for all n ∈ N. 
 
From (2.3.1), we have 
d(yn, yn-1) = d(fxn+1,  fxn) 
               ≥ d(gxn+1, gxn) + φ(d(gxn+1, gxn)) 
               = d(yn+1, yn) + φ(d(yn+1, yn))                                                                                                                         (2.3.6) 
               > d(yn+1, yn) 
 
Therefore d(yn+1, yn) < d(yn, yn-1). 
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Thus the sequence {d(yn+1, yn)} is a strictly decreasing sequence of  positive real numbers and so 
lim
𝑛𝑛→∞

 d(yn+1, yn) exists and it is r (say). i.e., lim
𝑛𝑛→∞

 d(yn+1, yn)  = r ≥ 0.                                                                             (2.3.7) 
 
Now d(yn+1, yn)  < d(yn, yn-1). 
 
Since φ is non-decreasing we have φ (d(yn+1, yn)) ≤ φ(d(yn, yn-1)). 
 
Therefore the sequence φ(d(yn+1, yn)) is a decreasing sequence of  nonnegative real’s and so  lim

𝑛𝑛→∞
 φ(d(yn+1, yn)) exists 

and it is s (say). 
 
i.e., lim

𝑛𝑛→∞
  φ(d(yn+1, yn)) = s ≥ 0.                                                                                                                                    (2.3.8) 

 
We now show that r = 0. 
 
From (2.3.6), we have d(yn, yn-1) ≥ d(yn+1, yn) + φ(d(yn+1, yn)). 
 
On letting n → ∞, from (2.3.7) and (2.3.8) we get r ≥ r + s, so that s = 0. 
 
Now  r ≤ d (yn+1, yn). 
 
Since φ is non- decreasing we have φ(r) ≤ φ (d (yn+1, yn)) so that φ (r) ≤ l lim

𝑛𝑛→∞
 φ (d(yn+1, yn)) = s = 0. 

 
That implies φ(r) = 0 so that r = 0. i.e., lim

𝑛𝑛→∞
d(yn+1, yn) = 0 

 
Now, we show that {yn} is Cauchy. 
 
Suppose that {yn} is not a Cauchy sequence. Then there exists an ε> 0 for which we can find sequences of  positive 
integers {m(k)} and {n(k)}  with n(k) > m(k) > k and d(ym(k), yn(k)) > ε and d(ym(k), yn(k)-1) ≤ ε. 
 
The following identities can be established. 
 
(i) lim

𝑘𝑘→∞
d(ym(k), yn(k)) = ε,  (ii) lim

𝑘𝑘→∞
d(ym(k)-1, yn(k)-1) = ε, 

Hence d(ym(k), yn(k)) > 2
ε

  for large k                                                                                                                            (2.3.9) 

d(ym(k)-1, yn(k)-1) = d(fxm(k),  fxn(k))  
 
d(ym(k)-1, yn(k)-1) = d(f (xm(k),  f (xn(k)) 
                        ≥ d(gxm(k), gxn(k)) + φ(d(gxm(k), gxn(k))) 
                        = d(ym(k), yn(k)) + φ(d(ym(k), yn(k))) 

                        ≥ d(ym(k), yn(k)) + φ
2
ε 

 
 

  (by (2.3.9)) 

On letting k → ∞, we get 

ε ≥ ε + φ 
2
ε 

 
 

 that implies  φ 
2
ε 

 
 

 = 0 so that  ε= 0, a contradiction. 

 
Hence {yn} is a Cauchy sequence in X. 
 
Since X is complete, there exists a point z ∈ X such that, lim

𝑛𝑛→∞
yn = z. 

 
Then by (2.3.2), we have lim

𝑛𝑛→∞
  yn = lim

𝑛𝑛→∞
 gxn = lim

𝑛𝑛→∞
 fxn+1 = z. 

 
Since f and g are compatible mappings, we have, lim

n→∞
d( fgxn, gfxn) = 0                                                      (2.3.10) 

 
Also, by the weak reciprocal continuity of f and g. 
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We have lim

n→∞
 fgxn = fz or lim

n→∞
 gfxn = gz. 

 
Let lim

𝑛𝑛→∞
 fgxn = f z. 

 
From (2.3.10) lim

𝑛𝑛→∞
 d(f z, g f xn) = 0, so that lim

𝑛𝑛→∞
gfxn =  fz. 

 
Now, we claim that f z = gz. 
 
Let  fz  ≠ gz. 
 
From (2.3.2), lim

𝑛𝑛→∞
 gf xn+1 = lim

𝑛𝑛→∞
ggxn =  f z. 

 
By (2.3.1) 
d( fz,  fgxn ) ≥ d(gz, ggxn) + φ(d(gz, ggxn)) 
          ≥ d(gz, ggxn). 
 
On letting n → ∞, we get 
d( fz,  f z) ≥ d(gz,  f z) 
 
that implies 0 ≥ d(gz,  f z). 
 
Hence f z = gz. 
 
Therefore z is a coincidence point of f and g. 
 
Since fz = gz, by the compatibility of f and g we have 
 fgz = gfz = ggz. 
 
Consider 
d(gz, ggz) = d( fz,  fgz) 

        ≥ d(gz, ggz) + φ(d(gz, ggz)) 
     0 ≥ φ(d(gz, ggz)) 

 
Therefore 0 = d(gz, ggz). 
 
Therefore gz = ggz and hence gz is a fixed point o f g. 
 
Also we have gz = ggz = fgz so that gz = fgz 
 
and hence gz is a fixed point of f . 
 
Therefore gz is a common fixed point of f and g. 
 
When lim

𝑛𝑛→∞
 gfxn = gz, we can prove the result in a similar way. 

 
Uniqueness 
 
Let u and v be two common fixed points of f and g. 
 
From (2.3.1), we have 
d(u,v) = d(fu,  fv) 

    ≥ d(gu, gv) + φ(d(gu, gv)) 
    = d(u, v) + φ(d(u, v)) 
 0 = φ(d(u, v)) 

 
so that d(u, v) = 0 and hence u = v. 
 
Therefore f and g have a unique common fixed point. 
 
Now, we prove a common fixed point theorem for a R- weakly Commuting of type (Af) or of type P. 
 



K. P. R. Sastry1, K. K. M. Sarma2, G. V. R. Babu3 and P. H. Krishna*4 / Common Fixed Point Theorems for Expanding Mappings, 
with Expansion  Factor Controlled by a Non Decreasing Function / IRJPA- 5(2), Feb.-2015. 

© 2015, RJPA. All Rights Reserved                                                                                                                                                                         23 

 
Theorem 2.4: Let f and g be two weakly reciprocally continuous self mappings of a complete metric space (X, d) 
satisfying 

(i) gX ⊆ f X 
(ii) there exists a mapping φ : [0,∞) → [0,∞) such that φ is non-decreasing and φ(t) = 0 if and only if t = 0 and  
(iii) d(f x,  fy) ≥ d(gx, gy)+φ(d(gx, gy))  for all x, y ∈ X.                                                    (2.4.1) 

 
If f and g are R- weakly commuting of type (Af ) or R- weakly commuting of type (P), then  f and g have a unique 
common fixed point.. 
 
Proof: Let {xn} and {yn} be as in Theorem 2.3. Again from the proof of Theorem 2.3 it follows that, {yn} is a Cauchy 
sequence in X. 
 
Since X is complete, there exists a point z ∈ X such that lim

𝑛𝑛→∞
yn = z. 

 
Then by (2.3.2), we have 
lim
𝑛𝑛→∞

yn = lim
𝑛𝑛→∞

gxn =  lim
𝑛𝑛→∞

 fxn+1 = z. 
 
Now, suppose that f and g are R- weakly commuting of type (Af ). 
 
Then we have d(fgxn, ggxn) ≤ Rd(fxn, gxn) for all xn ∈ X.                                                                    (2.4.2) 
 
Now, from the weak reciprocal continuity of f and g, we get that  lim

𝑛𝑛→∞
 fgxn = fz or lim

𝑛𝑛→∞
gfxn = gz. 

 
Let  lim

𝑛𝑛→∞
 fgxn = fz. 

 
From (2.4.2), we have d(fgxn, ggxn) ≤ Rd(fxn, gxn). 
 
On letting n → ∞, we get 
lim
𝑛𝑛→∞

d(fgxn, ggxn) ≤ R  lim
𝑛𝑛→∞

d( fxn, gxn) = 0 
 
Therefore lim

𝑛𝑛→∞
ggxn = f z. 

 
Now, we claim that fz = gz. 
 
Let f z ≠ gz. By (2.4.1) 
d(f z, fgxn) ≥ d(gz, ggxn) + φ(d(gz, ggxn)) 
                 ≥ d(gz, ggxn) 
 
On letting n → ∞, we get 
d( f z,  f z) ≥ d(gz,  f z) 

  0 ≥ d(gz,  f z). 
 
Hence gz = fz. 
 
Therefore z is a coincidence point of f and g. 
 
Again by R- weak commutativity of   type (Af), we have 
d( fgz, ggz) ≤ Rd(gz, fz) = 0. 
 
Therefore fgz = ggz. 
 
Now consider 
       d(gz, ggz) = d( f z,  fgz) 

            ≥ d(gz, ggz) + φ(d(gz, ggz)) 
         0 ≥ φ(d(gz, ggz)) 
         0 = d(gz, ggz) 

 
Therefore gz = ggz and hence gz is a fixed point of g. 
 
Also we have gz = ggz = fgz which implies that gz = fgz and hence gz is a fixed point of f. 
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Therefore gz is a common fixed point of f and g. 
 
Similarly, if   lim

𝑛𝑛→∞
gf xn = gz, we get that f and g have common fixed point. 

 
Now, suppose that f and g are R- weakly commuting of type (P). 
 
Then we have d (ffxn, ggxn) ≤ Rd(fxn, gxn)  for all xn ∈  X.                                                      (2.4.3) 
 
Again, by the weak reciprocal continuity of f and g, 
 
we have  lim

𝑛𝑛→∞
 fgxn =  f z or  lim

𝑛𝑛→∞
gfxn = gz. 

 
Let  lim

𝑛𝑛→∞
 fgxn = f z. 

 
lim
𝑛𝑛→∞

 (ffxn, ggxn) ≤ lim
𝑛𝑛→∞

Rd ( fxn, gxn) = Rd(z, z) = 0. 
 
Therefore lim

𝑛𝑛→∞
d(ffxn, ggxn) = 0. 

 
Using (2.3.2), we have f gxn-1  =  f f xn →  f z and  lim

𝑛𝑛→∞
d (f z, ggxn) = 0 that implies   lim

𝑛𝑛→∞
ggxn =  f z. 

 
Now, we claim that f z = gz. 
 
Let f z ≠ gz.  
 
By (2.4.1), we have  
d (fz,  fgxn) ≥ d(gz, ggxn) + φ(d(gz, ggxn)) 
                  ≥ d(gz, ggxn) 
 
On letting n → ∞, we get 
d( fz,  fz) ≥ d(gz,  fz) 

         0 ≥ d(gz,  fz). 
 
Hence gz = fz. 
 
Therefore z is a coincidence point of f and g. 
 
Again by R- weak commutativity of type (P), we have 
d( fgz, ggz) ≤ Rd(gz,  fz) = 0. 
 
Therefore fgz = ggz. 
 
Therefore f f z = fgz = ggz. 
 
Now consider 
       d(gz, ggz) = d( fz,  fgz) 

            ≥ d(gz, ggz) + φ(d(gz, ggz)) 
         0 ≥ φ(d(gz, ggz)) 
         0 = d(gz, ggz) 

 
Therefore gz = ggz and hence gz is a fixed point of g. 
 
Also we have gz = ggz = fgz. Thus gz = fgz and hence gz is a fixed point of f. 
 
Therefore gz is a common fixed point of f and g. 
 
Similarly, if lim

𝑛𝑛→∞
g fx = gz, we can easily prove that f and g have common fixed point. 

 
Uniqueness follows as in Theorem 2.3.  
 
In Theorem 2.3, if g is the identity mapping, then we obtain the following. 
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Theorem 2.5: Let f  be a surjective self mapping of  a complete metric space (X, d) satisfying 

(i) there exists a mapping φ : [0,∞) → [0,∞) such that φ is non-decreasing and φ(t) = 0 if and only if t = 0 and 
(ii) d( f x,  f y) ≥ d(x, y) + φ(d(x, y)) for all x, y ∈X                                         (2.5.1) 

. 
Then f  has a unique fixed point. 
 
The following is a supporting example of Theorem 2.3 and Theorem 2.4. 
 
Here φ non-decreasing but is neither continuous nor satisfies the Condition: φ (t) > t for all t > 0. 
 
Example 2.6: Let X = [0, 1] be endowed with the usual metric. 

We define f, g: X → X by f x = 
2
x

 and  gx = 
4
x

 and define φ : [0,∞) → [0,∞) by φ(t) =

10
4
12
4

t if t

t if t

 ≤ ≤

 >


 

Then g(X) = [0,
4
1

 ] ⊆ [0,
2
1

] = f (X). 

d( f x,  f y) =
2

yx −
 

d(gx, gy) =
4

yx −
 

φ(d(gx, gy)) =
4

yx −
 

2
yx −

= d(f x,  f y) ≥ d(gx, gy) + φ(d(gx, gy)) =
2

yx −
 holds for all x, y ∈ [0, 1],   f and g satisfy all the conditions of 

Theorem 2.3 and Theorem 2.4   and 0 is the unique fixed point. 
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