International Research Journal of Pure Algebra-5(2), 2015, 17-25

COMMON FIXED POINT THEOREMS FOR EXPANDING MAPPINGS, WITH EXPANSION FACTOR CONTROLLED BY A NON DECREASING FUNCTION

K. P. R. Sastry¹, K. K. M. Sarma², G. V. R. Babu³ and P. H. Krishna^{*4}

¹8-28-8/1, Tamil street, Chinna Waltair, Visakhapatnam - 530 017, India.

^{2, 3}Department of Mathematics, Andhra University, Visakhapatnam - 530 003, India.

⁴Department of Mathematics,

Viswanadha Institute of Technology and Management, Visakhapatnam - 531 173, India.

(Received On: 02-02-15; Revised & Accepted On: 23-02-15)

ABSTRACT

In this paper, we prove expansion mapping theorems in metric spaces the expansion factor being controlled by a nondecreasing function using the concept of compatible maps, weakly reciprocal continuity, R- weakly commuting of type (A f) and (P).

Keywords: Expansion mapping, φ - weakly expansive mapping, compatible mapping, *R*- weakly commuting mapping, expanding maps, expansion factor.

AMS (2010) Mathematics Subject Classification: 47H10, 54H25.

1. INTRODUCTION AND PRELIMINARIES

In 1922, Banach proved the Banach contraction principle. Many authors have extended, generalized the Banach contraction Principle in different ways. In 1992, Daffer and Kaneko [2] proved a fixed point theorem for expansive mappings.

Definition 1.1: Let *f* be a self -mapping of a metric space (X, d). Then *f* is said to be expansive if there exists a real number h > 1 such that

$$d(fx, fy) \ge h \, d(x, y) \text{ for all } x, y \in X.$$

$$(1.1.1)$$

In 1997, Alber and Gurre - Delabrire [1] introduced the notion of ϕ - weak contraction as follows.

Definition 1.2: [1] Let f be a self - mapping of a metric space (X, d). Then f is said to be φ - weak contraction if there exists a continuous mapping $\varphi : [0, \infty) \to [0, \infty)$ with $\varphi(0) = 0$ and $\varphi(t) < t$ for all t > 0 such that $d(f(x), f(y)) \le d(x, y) - \varphi(d(x, y))$ for all $x, y \in X$. (1.2.1)

Recently S. M. Kang, M. Kumar, P.Kumar and S. Kumar [5] introduced φ -weakly expansive mappings in metric spaces as follows.

Definition 1.3: [5] Let *f* be a self -mapping of a metric space (*X*, *d*). Then *f* is said to be φ - weakly expansive if there exists a continuous mapping φ : $[0, \infty) \rightarrow [0, \infty)$ with φ (0) = 0 and φ (*t*) > *t* for all *t* > 0 such that $d(fx, fy) \ge d(x, y) + \varphi(d(x, y))$ for all *x*, $y \in X$. (1.3.1)

Definition 1.4: [5] Let f and g be two self- mappings of a metric space (X, d). Then f is said to be φ - weakly expansive with respect to $g: X \to X$ if there exists a continuous mapping $\varphi: [0, \infty) \to [0, \infty)$ with $\varphi(0) = 0$ and $\varphi(t) > t$ for all t > 0 such that

$$d(fx, fy) \ge d(gx, gy) + \varphi(d(gx, gy)) \text{ for all } x, y \in X.$$

$$(1.4.1)$$

*Corresponding author: P. H. Krishna*4

In 1986, Jungck [4] defined the concept of compatible mappings.

Definition 1.5: [4] A pair (*f*, *g*) of self-mappings of a metric space (*X*, *d*) is said to be compatible if $\lim_{n \to \infty} d(fgx_n, g fx_n) = 0$, whenever $\{x_n\}$ is a sequence in *X* such that $\lim_{n \to \infty} f(x_n) = \lim_{n \to \infty} g(x_n) = z$ for some $z \in X$.

In 1994, Pant [8] introduced the notion of point wise *R*- weak commutativity in metric spaces.

Definition 1.6: [8] Let f and g be two self -mappings of a metric space (X, d). Then f and g are called R-weakly commuting on X if there exists R > 0 such that

$$d(fgx, gfx) \le Rd(fx, gx) \quad \text{for all } x \in X.$$
(1.6.1)

It is obvious that R-weakly commuting mappings commute at their coincidence points and hence R-weak commutativity is equivalent to commutativity at coincidence points.

In 1997, Pathak *et al.* [12] generalized the notion of *R*-weakly commuting mappings to R-weakly commuting mappings of type (Ag) and of type (Af).

Definition 1.7: [12] Let f and g be two self -mappings of a metric space (X, d). Then f and g are called R-weakly commuting of type (Ag) if there exists R > 0 such that

$$d(ffx, gfx) \le Rd(fx, gx)$$
 for all $x \in X$.

Similarly, the two self -mappings f and g are called R-weakly commuting of type (Af) if there exists R > 0 such that $d(fgx, ggx) \le Rd(fx, gx)$ for all $x \in X$.

Definition 1.8: [12] Let *f* and *g* be two self -mappings of a metric space (*X*, *d*). Then *f* and *g* are called *R* -weakly commuting of type (*P*) if there exists R > 0 such that

$$d(ffx, ggx) \le Rd(fx, gx)$$
 for all $x \in X$.

In 1998, [10] introduced a new continuity condition, known as reciprocal continuity and obtained a common fixed point theorem by using the compatibility in a metric space. The notion of reciprocal continuity is weaker than the continuity of one of the mappings.

Definition 1.9: [10] Two self mappings f and g of a metric space (X, d) are called reciprocally continuous if $\lim_{n \to \infty} fgx_n = fz$ and $\lim_{n \to \infty} gfx_n = gz$, whenever $\{x_n\}$ is a sequence in X such that $\lim_{n \to \infty} fx_n = \lim_{n \to \infty} gx_n = z$ for some z in X.

In 2011, Pant et al. [11] generalized the notion of reciprocal continuity to weak reciprocal continuity as follows.

Definition 1.10: [11] Two self mappings *f* and *g* of a metric space (*X*, *d*) are called weakly reciprocally continuous if $fgx_n = fz$ or $\lim gf(x_n) = gz$ whenever $\{x_n\}$ is a sequence in *X* such that

 $\lim_{n \to \infty} fx_n = \lim_{n \to \infty} gx_n = z \text{ for some } z \text{ in } X.$

In 1992, Daffer and Kaneko [2] proved the following fixed point theorem.

Theorem 1.11: [2] Let (*X*, *d*) be a complete metric space. Let *f* be a surjective self map and *g* be an injective self map of *X* which satisfy the following conditions: There exists a number q > 1 such that

$$d(fx, fy) \ge q d(gx, gy)$$
 for each x, y in X,

then f and g have a unique common fixed point.

In 1993, B. E. Rhoades extended Theorem 1.11 to compatible mappings as follows.

Theorem 1.12: [13] Let (*X*, *d*) be a complete metric space. Let *f* and g be compatible self maps of X satisfying (i) $gX \subseteq f X$;

(ii) there exists q > 1 such that $d(f x, f y) \ge q d(gx, gy)$ for each x, y in X, and

(iii) f is continuous.

Then f and g have a unique common fixed point.

In 2008, Kumar [6] generalized Theorem 1.12 to weakly compatible maps as follows.

Theorem 1.13: [6] Let (X, d) be a complete metric space. Let f and g be weakly compatible self maps of X satisfying (i) $gX \subseteq fX$;

(ii) there exists q > 1 such that $d(fx, fy) \ge q d(gx, gy)$ for all $x, y \in X$.

If one of the subspaces gX or fX is complete, then f and g have a unique common fixed point.

In 2012, S. Manro and P. Kumar [7] proved the following theorem, using the concept of compatibility and weak reciprocal continuity in complete metric spaces.

Theorem 1.14: [7] Let f and g be two weakly reciprocally continuous self mappings of a complete metric space (X, d) satisfying

- (i) $gX \subseteq fX$;
- (ii) there exists q > 1 such that $d(f x, fy) \ge q d(gx, gy)$ for all $x, y \in X$,

If f and g are either compatible or R- weakly commuting of type (Ag) or, R- weakly commuting of type (Af) or R-weakly commuting of type (P), then f and g have a unique common fixed point.

Recently S. M. Kang *et al.* [5] generalized and extended Theorem 1.4 for φ - weakly expansive mappings as follows.

Theorem 1.15: [5] Let f and g be two weakly reciprocally continuous self mappings of a complete metric space (X, d) satisfying

- (i) $gX \subseteq fX$;
- (ii) there exists a continuous mapping $\varphi : [0,\infty) \to [0,\infty)$ with $\varphi(0) = 0$ and $\varphi(t) > t$ for all t > 0 such that $d(fx, fy) \ge d(gx, gy) + \varphi(d(gx, gy))$ for all $x, y \in X$, and if f and g are compatible, then f and g have a unique common fixed point.

Theorem 1.16: [5] Let f and g be two weakly reciprocally continuous self mappings of a complete metric space (X, d) satisfying

- (i) $gX \subseteq fX$;
- (ii) there exists a continuous mapping φ: [0,∞) → [0,∞) with φ(0) = 0 and φ(t) > t f or all t > 0 such that d(f x, fy) ≥ d (gx, gy) + φ(d(gx, gy)) for all x, y∈X, and if f and g are R weakly commuting of type (Ag) or, R- weakly commuting of type (Af) or R weakly commuting of type (P), then f and g have a unique common fixed point.

We observe that in Theorem 1.15 and Theorem 1.16 the condition $\varphi(t) > 0$ for all t > 0 is unnecessary. Further, we obtain common fixed point theorems when φ is non-decreasing (but not necessarily continuous).

An example also is provided in support of our result.

2. MAIN RESULTS

We begin with some definitions.

Definition 2.1: A function φ : $[0, \infty) \rightarrow [0, \infty)$ is called a control function if

- (i) φ is non-decreasing and
- (ii) $\varphi(t) = 0$ if and only if t = 0.

Definition 2.2: Suppose (*X*, *d*) is a metric space and *f*, *g* are two self maps on *X*. Suppose φ is a control function such that

$$d(fx, fy) \ge d(gx, gy) + \varphi(d(gx, gy))$$
 for all $x, y \in X$.

Then f is said to be expanding with respect to g with expansion factor φ (d (gx, gy)) for all x, y $\in X$.

Now we obtain conditions for the existence of a common fixed point for two self maps f and g on a complete metric space, when f is expanding with respect to g, the control function being φ .

The exact statement of the result is as follows.

Theorem 2.3: Let f and g be two weakly reciprocally continuous self mappings of a complete metric space (X, d) satisfying

- (i) $g(X) \subseteq f(X)$;
- (ii) there exists a mapping $\varphi : [0,\infty) \to [0,\infty)$ such that φ is non-decreasing and $\varphi(t) = 0$ if and only if t = 0 and $d(fx, fy) \ge d(gx, gy) + \varphi(d(gx, gy))$ for all $x, y \in X$. (2.3.1)

If *f* and *g* are compatible,

Then f and g have a unique common fixed point.

Proof: Let $x_0 \in X$.

Since $g(X) \subseteq f(X)$, we can choose $x_1 \in X$ such that $gx_0 = fx_1$.

In general we can choose $\{x_n\}$ in X such that $gx_n = fx_{n+1}$ for n = 0, 1, 2,

Write $y_n = gx_n = f x_{n+1}$	(2.3.2)
--------------------------------	---------

If $y_n = y_{n+1}$ for some $n \in N$, then we have $gx_n = gx_{n+1}$ so that $gx_n = fx_{n+1} = gx_{n+1}$.

This implies that x_{n+1} is a coincidence point of *f* and *g*.

Since f and g are compatible, we have $fgx_{n+1} = gfx_{n+1}$ so that $fgx_n = ggx_n$ (2.3.3)

and hence gx_n is a coincidence point of f and g.

Now, from (2.3.1), we have

$$d (fx_{n+1}, fgx_n) \ge d(gx_{n+1}, ggx_n) + \varphi(d(gx_{n+1}, ggx_n))$$

$$\ge d(fx_{n+1}, fgx_n) + \varphi(d(fx_{n+1}, ggx_n))$$

$$0 \ge \varphi(d(fx_{n+1}, ggx_n))$$

$$0 \ge \varphi(d(fx_{n+1}, fgx_n))$$
(2.3.5)

That implies $gx_n = fgx_n$.

Therefore gx_n is a fixed point of f.

 $0 = d(fx_{n+1}, f gx_n)$ $0 = d(gx_n, f gx_n)$

From (2.3.5) and (2.3.3), we have $0 \ge \varphi(d(gx_{n+1}, ggx_n))$

therefore $0 \ge \varphi(d(fx_{n+1}, fgx_n))$

therefore $0 = d(fx_{n+1}, fgx_n))$

This implies $f x_{n+1} = fgx_n$ $fx_{n+1} = ggx_n$ $gx_n = ggx_n$ and hence gx_n is a fixed point of g.

Therefore gx_n is a common fixed point of f and g.

Hence we may assume that without loss of generality that $y_n \neq y_{n+1}$ for all $n \in N$

so that
$$d(y_n, y_{n+1}) > 0$$
 for all $n \in N$.

From (2.3.1), we have $d(y_n, y_{n-1}) = d(fx_{n+1}, fx_n)$ $\geq d(gx_{n+1}, gx_n) + \varphi(d(gx_{n+1}, gx_n))$ $= d(y_{n+1}, y_n) + \varphi(d(y_{n+1}, y_n))$ $> d(y_{n+1}, y_n)$

Therefore $d(y_{n+1}, y_n) < d(y_{n}, y_{n-1})$.

© 2015, RJPA. All Rights Reserved

(2.3.6)

Thus the sequence $\{d(y_{n+1}, y_n)\}$ is a strictly decreasing sequence of positive real numbers and so $\lim_{n \to \infty} d(y_{n+1}, y_n) \text{ exists and it is } r \text{ (say). } i.e., \lim_{n \to \infty} d(y_{n+1}, y_n) = r \ge 0.$ (2.3.7)

Now $d(y_{n+1}, y_n) < d(y_n, y_{n-1})$.

Since φ is non-decreasing we have $\varphi(d(y_{n+1}, y_n)) \leq \varphi(d(y_n, y_{n-1}))$.

Therefore the sequence $\varphi(d(y_{n+1}, y_n))$ is a decreasing sequence of nonnegative real's and so $\lim_{n \to \infty} \varphi(d(y_{n+1}, y_n))$ exists and it is *s* (say).

i.e.,
$$\lim_{n \to \infty} \varphi(d(y_{n+1}, y_n)) = s \ge 0.$$
 (2.3.8)

We now show that r = 0.

From (2.3.6), we have $d(y_n, y_{n-1}) \ge d(y_{n+1}, y_n) + \varphi(d(y_{n+1}, y_n))$.

On letting $n \to \infty$, from (2.3.7) and (2.3.8) we get $r \ge r + s$, so that s = 0.

Now $r \leq d(y_{n+1}, y_n)$.

Since φ is non-decreasing we have $\varphi(r) \le \varphi(d(y_{n+1}, y_n))$ so that $\varphi(r) \le \lim_{n \to \infty} \varphi(d(y_{n+1}, y_n)) = s = 0$.

That implies $\varphi(r) = 0$ so that r = 0. *i.e.*, $\lim_{n \to \infty} d(y_{n+1}, y_n) = 0$

Now, we show that $\{y_n\}$ is Cauchy.

Suppose that $\{y_n\}$ is not a Cauchy sequence. Then there exists an $\varepsilon > 0$ for which we can find sequences of positive integers $\{m(k)\}$ and $\{n(k)\}$ with n(k) > m(k) > k and $d(y_m(k), y_n(k)) > \varepsilon$ and $d(y_{m(k)}, y_{n(k)-1}) \le \varepsilon$.

The following identities can be established.

(i)
$$\lim_{k \to \infty} d(y_m(k), y_n(k)) = \varepsilon$$
, (ii) $\lim_{k \to \infty} d(y_m(k)-1, y_n(k)-1) = \varepsilon$,
Hence $d(y_{m(k)}, y_{n(k)}) > \frac{\varepsilon}{2}$ for large k
 $d(y_{m(k)-1}, y_{n(k)-1}) = d(fx_{m(k)}, fx_{n(k)})$
(2.3.9)

$$d(y_{m(k)-1}, y_{n(k)-1}) = d(f(x_{m(k)}, f(x_{n(k)})))$$

$$\geq d(g_{xm(k)}, gx_{n(k)}) + \varphi(d(gx_{m(k)}, gx_{n(k)})))$$

$$= d(y_{m(k)}, y_{n(k)}) + \varphi(d(y_{m(k)}, y_{n(k)})))$$

$$\geq d(y_{m(k)}, y_{n(k)}) + \varphi\left(\frac{\varepsilon}{2}\right) \quad (by (2.3.9))$$

On letting $k \to \infty$, we get

$$\varepsilon \ge \varepsilon + \varphi\left(\frac{\varepsilon}{2}\right)$$
 that implies $\varphi\left(\frac{\varepsilon}{2}\right) = 0$ so that $\varepsilon = 0$, a contradiction.

Hence $\{y_n\}$ is a Cauchy sequence in X.

Since *X* is complete, there exists a point $z \in X$ such that, $\lim y_n = z$.

Then by (2.3.2), we have $\lim_{n \to \infty} y_n = \lim_{n \to \infty} gx_n = \lim_{n \to \infty} fx_{n+1} = z.$

Since f and g are compatible mappings, we have, $\lim_{n \to \infty} d(fgx_n, gfx_n) = 0$ (2.3.10)

Also, by the weak reciprocal continuity of f and g.

We have $\lim_{n\to\infty} fgx_n = fz$ or $\lim_{n\to\infty} gfx_n = gz$.

Let $\lim_{n \to \infty} fgx_n = fz$.

From (2.3.10) $\lim_{n \to \infty} d(fz, gfx_n) = 0$, so that $\lim_{n \to \infty} gfx_n = fz$.

Now, we claim that f z = gz.

Let $fz \neq gz$.

From (2.3.2), $\lim_{n\to\infty} gf x_{n+1} = \lim_{n\to\infty} gg x_n = f z.$

By (2.3.1) $d(fz, fgxn) \ge d(gz, ggx_n) + \varphi(d(gz, ggx_n)))$ $\ge d(gz, ggxn).$

On letting $n \to \infty$, we get $d(fz, fz) \ge d(gz, fz)$

that implies $0 \ge d(gz, fz)$.

Hence f z = gz.

Therefore z is a coincidence point of f and g.

Since fz = gz, by the compatibility of f and g we have fgz = gfz = ggz.

Consider d(gz, ggz) = d(fz, fgz) $\geq d(gz, ggz) + \varphi(d(gz, ggz)))$ $0 \geq \varphi(d(gz, ggz))$

Therefore 0 = d(gz, ggz).

Therefore gz = ggz and hence gz is a fixed point of g.

Also we have gz = ggz = fgz so that gz = fgz

and hence gz is a fixed point of f.

Therefore gz is a common fixed point of f and g.

When $\lim_{n \to \infty} gfx_n = gz$, we can prove the result in a similar way.

Uniqueness

Let u and v be two common fixed points of f and g.

From (2.3.1), we have d(u,v) = d(fu, fv) $\geq d(gu, gv) + \varphi(d(gu, gv))$ $= d(u, v) + \varphi(d(u, v))$ $0 = \varphi(d(u, v))$

so that d(u, v) = 0 and hence u = v.

Therefore f and g have a unique common fixed point.

Now, we prove a common fixed point theorem for a R- weakly Commuting of type (Af) or of type P.

Theorem 2.4: Let f and g be two weakly reciprocally continuous self mappings of a complete metric space (X, d) satisfying

(i) $gX \subseteq fX$

(ii) there exists a mapping $\varphi : [0,\infty) \to [0,\infty)$ such that φ is non-decreasing and $\varphi(t) = 0$ if and only if t = 0 and (iii) $d(f x, fy) \ge d(gx, gy) + \varphi(d(gx, gy))$ for all $x, y \in X$. (2.4.1)

If f and g are R- weakly commuting of type (Af) or R- weakly commuting of type (P), then f and g have a unique common fixed point.

Proof: Let $\{x_n\}$ and $\{y_n\}$ be as in Theorem 2.3. Again from the proof of Theorem 2.3 it follows that, $\{y_n\}$ is a Cauchy sequence in *X*.

Since *X* is complete, there exists a point $z \in X$ such that $\lim \overline{y}_n = z$.

Then by (2.3.2), we have $\lim_{n \to \infty} y_n = \lim_{n \to \infty} gx_n = \lim_{n \to \infty} fx_{n+1} = z.$

Now, suppose that f and g are R- weakly commuting of type (Af).

Then we have $d(fgx_n, ggx_n) \leq Rd(fx_n, gx_n)$ for all $x_n \in X$.

Now, from the weak reciprocal continuity of f and g, we get that $\lim fgx_n = fz$ or $\lim gfx_n = gz$.

Let $\lim_{n \to \infty} fgx_n = fz$.

From (2.4.2), we have $d(fgx_n, ggx_n) \leq Rd(fx_n, gx_n)$.

On letting $n \to \infty$, we get $\lim_{n \to \infty} d(fgx_m, ggx_n) \le R \lim_{n \to \infty} d(fx_m, gx_n) = 0$

Therefore $\lim_{n \to \infty} ggx_n = fz$.

Now, we claim that fz = gz.

Let $f z \neq gz$. By (2.4.1) $d(f z, fgx_n) \ge d(gz, ggx_n) + \varphi(d(gz, ggx_n)))$ $\ge d(gz, ggx_n)$

On letting $n \to \infty$, we get $d(fz, fz) \ge d(gz, fz)$ $0 \ge d(gz, fz)$.

Hence gz = fz.

Therefore z is a coincidence point of f and g.

Again by *R*- weak commutativity of type (*Af*), we have $d(fgz, ggz) \le Rd(gz, fz) = 0$.

Therefore fgz = ggz.

Now consider d(gz, ggz) = d(fz, fgz) $\geq d(gz, ggz) + \varphi(d(gz, ggz))$ $0 \geq \varphi(d(gz, ggz))$ 0 = d(gz, ggz)

Therefore gz = ggz and hence gz is a fixed point of g.

Also we have gz = ggz = fgz which implies that gz = fgz and hence gz is a fixed point of f.

(2.4.2)

Therefore gz is a common fixed point of f and g.

Similarly, if $\lim_{n \to \infty} gf x_n = gz$, we get that *f* and *g* have common fixed point.

Now, suppose that f and g are R- weakly commuting of type (P).

Then we have $d(ffx_n, ggx_n) \leq Rd(fx_n, gx_n)$ for all $x_n \in X$.

Again, by the weak reciprocal continuity of f and g,

we have $\lim_{n \to \infty} fgx_n = fz$ or $\lim_{n \to \infty} gfx_n = gz$.

Let $\lim_{n \to \infty} fgx_n = fz$.

 $\lim_{n\to\infty} (ffxn, ggx_n) \le \lim_{n\to\infty} Rd (fxn, gx_n) = Rd(z, z) = 0.$

Therefore $\lim_{n \to \infty} d(ffx_n, ggx_n) = 0.$

Using (2.3.2), we have $fgx_{n-1} = ffx_n \to fz$ and $\lim_{n \to \infty} d(fz, ggx_n) = 0$ that implies $\lim_{n \to \infty} ggx_n = fz$.

Now, we claim that f z = gz.

Let $f z \neq gz$.

By (2.4.1), we have $d(fz, fgx_n) \ge d(gz, ggx_n) + \varphi(d(gz, ggx_n)))$ $\ge d(gz, ggx_n)$

On letting $n \to \infty$, we get $d(fz, fz) \ge d(gz, fz)$ $0 \ge d(gz, fz)$.

Hence gz = fz.

Therefore z is a coincidence point of f and g.

Again by *R*- weak commutativity of type (*P*), we have $d(fgz, ggz) \le Rd(gz, fz) = 0$.

Therefore fgz = ggz.

Therefore ff z = fgz = ggz.

Now consider d(gz, ggz) = d(fz, fgz) $\geq d(gz, ggz) + \varphi(d(gz, ggz)))$ $0 \geq \varphi(d(gz, ggz))$ 0 = d(gz, ggz)

Therefore gz = ggz and hence gz is a fixed point of g.

Also we have gz = ggz = fgz. Thus gz = fgz and hence gz is a fixed point of f.

Therefore gz is a common fixed point of f and g.

Similarly, if $\lim_{n \to \infty} g fx = gz$, we can easily prove that *f* and *g* have common fixed point.

Uniqueness follows as in Theorem 2.3.

In Theorem 2.3, if g is the identity mapping, then we obtain the following.

© 2015, RJPA. All Rights Reserved

(2.4.3)

Theorem 2.5: Let f be a surjective self mapping of a complete metric space (X, d) satisfying

(i) there exists a mapping $\varphi: [0,\infty) \to [0,\infty)$ such that φ is non-decreasing and $\varphi(t) = 0$ if and only if t = 0 and (ii) $d(fx, fy) \ge d(x, y) + \varphi(d(x, y))$ for all $x, y \in X$ (2.5.1)

Then f has a unique fixed point.

The following is a supporting example of Theorem 2.3 and Theorem 2.4.

Here φ non-decreasing but is neither continuous nor satisfies the Condition: $\varphi(t) > t$ for all t > 0.

Example 2.6: Let X = [0, 1] be endowed with the usual metric.

We define
$$f, g: X \to X$$
 by $fx = \frac{x}{2}$ and $gx = \frac{x}{4}$ and define $\varphi : [0, \infty) \to [0, \infty)$ by $\varphi(t) = \begin{cases} t & \text{if } 0 \le t \le \frac{1}{4} \\ 2t & \text{if } t > \frac{1}{4} \end{cases}$

Then
$$g(X) = [0, \frac{1}{4}] \subseteq [0, \frac{1}{2}] = f(X).$$

$$d(fx, fy) = \left|\frac{x - y}{2}\right|$$
$$d(gx, gy) = \left|\frac{x - y}{4}\right|$$
$$|x - y|$$

 $\varphi(d(gx, gy)) = \left|\frac{x - y}{4}\right|$ $\left|\frac{x - y}{2}\right| = d(fx, fy) \ge d(gx, gy) + \varphi(d(gx, gy)) = \left|\frac{x - y}{2}\right| \text{ holds for all } x, y \in [0, 1], f \text{ and } g \text{ satisfy all the conditions of}$

Theorem 2.3 and Theorem 2.4 and 0 is the unique fixed point.

REFERENCES

- [1] Y. A. Alber, S. Gurre- Delabriere, Principle of weakly contractive maps in Hilbert spaces, New results in operator theory and its applications, In: Oper. Theory Adv., Vol. 98, Birkhauser, Switzerland (1997), 7-22, doi: 10.1007/978-3-0348-8910-0-2.
- [2] Z. P. Daffer and H. Kaneko, On expansive mappings, Math. Japon. 37(1992), 733-735.
- [3] G. Jungck, Commuting mappings and fixed points, Amer. Math. Monthly, 83, No.4 (1976), 261-263, doi: 10.2307/2318216.
- [4] G. Jungck, Compatible mappings and common fixed points, Int. J. Math. Math. Sci., 9, No. 4 (1986), 771-779, doi: 10.1155/ S0161171286000935.
- [5] S. M. Kang, M. Kumar, P. Kumar and S.umar, Fixed point theorems for φ weakly expansive mappings in metric spaces, Int. J. Pure and App Math., Volume 90, No. 2 (2014), 143-152., doi: 10.123732/ jjpam.v90i2.4.
- [6] S. Kumar, S.K. Garg, Expansion mappings theorems in metric spaces, Int. J. Contemp. Math. Sci., 4, No. 36 (2009), 1749-1758. 1, 1.13.
- [7] S. Manro, P. Kumam, Common fixed point theorems for expansion mappings in various abstract spaces using the concept of weak reciprocal continuity, Fixed Point Theory Appl., 2012, No. 221 (2012), 12 pages, doi: 10.1186/1687-1812-2012-221.1, 1.14.
- [8] R.P. Pant, Common fixed points of non-commuting mappings, J. Math. Anal. Appl., 188, No. 2 (1994), 436-440, doi: 10.1006/jmaa.1994.1437.1, 1.6
- [9] R.P. Pant, Common fixed points of four mappings, Bull. Calcutta Math. Soc., 90, No. 4 (1998), 281-286.
- [10] R.P. Pant, A common fixed point theorem under a new condition, Indian J. Pure Appl. Math., 30, No. 2 (1999), 147-152.
- [11] R.P. Pant, R.K. Bisht, D. Arora, Weak reciprocal continuity and fixed point theorems, Ann. Univ. Ferrara, 57, No. 1 (2011), 181-190, doi: 10.1007/s11565-011-0119-3.
- [12] H.K. Pathak, Y.J. Cho, S.M. Kang, Remarks of R-weakly commuting mappings and common fixed point theorems, Bull. Korean Math. Soc., 34, No. 2 (1997), 247-257.
- [13] B. E. Rhoades, An expansion mapping theorem, Jnanabha 23(1993), 151-152.

Source of Support: Nil, Conflict of interest: None Declared

1