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ABSTRACT 
This paper mainly introduces elementary column transformation method of inverse matrix of symmetric r-circulant 
matrix over skew field by using the elementary column transformation of polynomial matrix. 
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1. INTRODUCTION 
 
Symmetric r-circulant matrix is an important special matrix. Therefore, the algorithms for inverse matrix of the matrix 
over skew field cause research of a lot of mathematicians. In this paper, using the elementary column transformation of 
polynomial matrix is given elementary column transformation method of inverse matrix of symmetric r-circulant 
matrix. And the algorithm has smaller amount of computations. 
 
2. PREPARATION KNOWLEDGE 
 
In this paper, let K  be a skew field and x  be unknown, and its primitive formula 
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is defined to be unary polynomial over skew field K , simply indicating ( ) ∑
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. [ ]xK  is a ring, and it is 

defined to be monadic polynomial ring over skew field K . nmK ×  is denoted nm× -factorial-matrix. 
( ) ( ) ( )( )xgxfxd ,=  of leading coefficient being 1 are respectively denoted the greatest left common divisor ( )xf  

and ( )xg . 
 
Definition 2.1: Let Kr∈ , matrix 
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is called r-circulant matrix. Referred to as ( ) rnr KMaaaKA ∈= −120 ,,,  . 
 
Definition 2.2: Let Kr∈ , matrix 
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is called symmetric r-circulant matrix. Referred to as ( ) rnr SKMaaaSKA ∈= ,,, 20  . 
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Definition 2.3: Introducing n  order identity matrix ( )qnnn eeeJ ,,, 1 −=  and ie  being n  order unit column vector 

of the first i  component for 1 and the other component for 0, then nAJ  is called r-circulant matrix. 
 
 
3. ALGORITHM 
 
Lemma 3.1: Set ( ) ,,,, 110 rnr KMaaaKA ∈= − ( ) ,,, 021 rnnr SKMaaaSKB ∈= −−  then ABP = and

APB = , ( ) 11 1,0,,0 SKMSKP ∈=  . 
 

Lemma 3.2: Set ( ) ( )JfAKMaaaKAKA rnr
nm =⇔∈=∈ −

×
110 ,,,,  , ( ) i

n

i
i xaxf ∑

−

=

=
1

0

. 

 

Lemma 3.3: Set ( ) PJaASKMaaaSKAKA
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Lemma 3.4: Set ( ) ( ) ( ),0,,,,,, 021110 ≠∈=∈= −−− rKMaaaKBSKMaaaSKA rnnrrnr   then A  is non 

singular ⇔ B  is non singular. 
 
Lemma 3.5: Set ( ) ( )0,,, 110 ≠∈= − rKMaaaKA rnr   be non singular, then rKMA ∈−1 . 
 
Lemma 3.6: Set ( ) ( )0,,, 110 ≠∈= − rSKMaaaSKA rnr   be non singular, then rSKMA ∈−1 . 
 
Lemma 3.7: Set ( ) ( )0,,, 110 ≠∈= − rKMaaaKA rnr  , then A  is non singular ⇔ ( ) ( )( ) 1, =xgxf . 
 
Lemma 3.8: Set ( ) ( )0,,, 110 ≠∈= − rSKMaaaSKA rnr  , then A  is non singular ⇔ ( ) ( )( ) 1, =xgxf . 
 
Theorem 3.1: Set ( ) ( )xgxf ,  be nonzero polynomial of [ ]xK , If ( ) ( )( )xgxfC ,= , by a series of the elementary 

column transformation of C , we have ( )( )0,xd . Then ( ) ( )( ) ( )xdxgxf =, , ( ) ( ) ( ) ( ) ( )xgxvxfxuxd += . 

Theorem 3.2: Set ( ) ( )xgxf , be nonzero polynomial of [ ]xK .If 
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column transformation of C , we have 
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. Then ( ) ( )( ) ( )xdxgxf =, , ( ) ( ) ( ) ( ) ( )xgxvxfxuxd += . 

 
Corollary 3.1: Set ( ) ( )0,,, 110 ≠∈= − rKMaaaKA rnr   and non singular, then we have polynomial
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i xbxu , and ( )JuA =−1 . 

 
Proof: Because ( ) ( )0,,, 110 ≠∈= − rKMaaaKA rnr   and non singular，  according to lemma 3.7 we have 

( ) ( )( ) 1, =xgxf . 
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By a series of the elementary column transformation for polynomial matrix 
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i xbxu . So we have ( ) ( ) ( ) ( ) 1=+ xgxvxfxu , if Jx = , then 

( ) ( ) ( ) ( ) EJgJvJfJu =+ .  
 
Corollary 3.2: Set ( ) ( ) ( ),0,,,,,, 021110 ≠∈=∈= −−− rKMaaaKASKMaaaSKB rnnrrnr   and 

( )( )JuPB =−1 . 
 
Proof: According to lemma 3.1 APB =  and PP =−1 , so ( ) ( )( )JuPPAAPAPB ==== −−−−− 11111 . 
 
According to corollary 3.1 and corollary 3.2 we get elementary transformation algorithm. Follow the steps outlined 
below： 
 
Step-1: According to ( ) ( )0,,, 110 ≠∈= − rKMaaaKA rnr  , we get ( ) ( )xgxf , . 
 

Step-2: By a series of the elementary column transformation for
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Step-3: If ( ) 1=xd , then ( ) ( )0,,, 110 ≠∈= − rKMaaaKA rnr   and non singular. We get ( )JuA =−1 . 
 
Step-4: We get ( ) rnr SKMaaaSKB ∈= −110 ,,,   and non singular and ( )JuA =−1 , so we get ( )( )JuPB =−1 . 
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