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ABSTRACT 
In this paper we introduce the notion of F- bi-near subtraction semigroup. Also we give characterizations of F- bi-near 
subtraction semigroup. 
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1. INTRODUCTION 
 
In 2007, Dheena[1] introduced Near Subtraction Algebra, Throughout his paper by a Near Subtraction Algebra, we 
mean a Right Near Subtraction Algebra. For basic definition one may refer to Pillz[4]. Zekiye Ciloglu, Yilmaz Ceven 
[5] gave the notation of Fuzzy Near Subtraction semigroups. Seydali Fathima et.al [2, 3] introduced the notation of      
S1-near subtraction semigroup and S2-near subtraction semigroup.  In this paper we shall obtained equivalent conditions 
for regularity in terms of F- Bi near subtraction semigroup.  
 
2. PRELIMINARIES  
 
Definition 2.1: A non-empty subset X together with two binary operations “−“and “.” is said to be subtraction 
semigroup If (i) (X,−) is a subtraction algebra (ii) (X, .) is a semi group (iii) x(y−z)=xy−xz  and (x−y)z= xz−yz  for 
every x, y, z∈X. 
 
Definition 2.2: A non-empty subset X together with two binary operations “−“and “.” is said to be near subtraction 
semigroup if (i) (X,−) is a subtraction algebra (ii) (X,.) is a semi group and (iii) (x−y)z= xz−yz   for every x, y, z∈X. 
 
Definition 2.3: A non-empty subset X=X1∪X2 together with two binary operations “-” and “.” Is said to be bi-near 
subtraction semigroup(right). If (i) (X1,-, .) is a near-subtraction semigroup (ii) (X2,-,.) is a subtraction semigroup 
 
Definition 2.4: A non-empty subset X is said to be S1-near subtraction semigroup if for every a∈X there exists  
x∈X* such that axa=xa. 
 
Definition 2.5: A non-empty subset X is said to be S2-near subtraction semigroup if for every a∈X there exists  
x∈X* such that axa=ax. 
 
Definition 2.6: A sub commutative near subtraction semigroup is an intersection of S1-near subtraction semigroup  
and  S2-near subtraction semigroup.  that is, xa=ax. 
 
Definition 2.7: A non-empty subset X is said to be nil-near subtraction semigroup if there exists a positive integer 
k˃1 such that ak = 0 Which implies that xa=0 where x = ak-1. 
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Definition 2.8: A non-empty subset X is said to be zero-symmetric. if 0-x=0 , ox=0  and xo=o for all x∈X.  
 
Definition 2.9: A non-empty subset Y of X is closed under “-” and XY strictly contained in Y is called an X- system. 
 
3. F-Bi NEAR SUBTRACTION SEMIGROUP 
 
Definition 3.1: A non-empty subset X=X1∪X2 together with two binary operations“-“and “.” Is said to be F- bi near 
subtraction semigroups. If (i) for every a∈X1 there exists x∈X1

* such that axa=xa. (ii) for every a∈X2  there exists 
x∈X2

* such that axa=ax. 
 
Example 3.2: Let X1= {0, a, b, 1} in which “-” and “.” be defined by 

- 0 a b 1 

  

. 0 a b 1 
0 0 0 0 0 0 0 0 0 0 
a a 0 a a a 0 a 0 0 
b b b 0 b b 0 0 b b 
1 1 b a 0 1 0 a b 1 

 
Then X1 is a s1-near-subtraction semi group 
 
Let X1= {0, a, b, 1} in which “-” and “.” be defined by 

- 0 a b 1 

 

. 0 a b 1 
0 0 0 0 0 0 0 0 0 0 
a a 0 1 b a a a a a 
b b 0 0 b b a 0 1 b 
1 1 0 1 0 1 0 a b 1 

 
Then X2 is an S2-near subtraction semi group. 
 
Hence, X=X1∪X2 is a F-bi near Subtraction Semigroup. 
 
Note 3.3: Obviously, every Bi-near subtraction is a F- bi-near subtraction semi group. But the converse is not true 
 
Example 3.4: Let X1 = {0, a, b, 1}} in which “-” and “.” be defined by 

- 0 a b 1 

 

. 0 a b 1 
0 0 0 0 0 0 0 0 0 0 
a a 0 1 b a a a a a 
b b 0 0 b b a 0 1 b 
1 1 0 1 0 1 0 a b 1 

 
Thus X1 is a s1-near subtraction semi group but not near subtraction semigroup. 
 
Let X2= {0, a, b, c} in which “-” and “.” be defined by 

- 0 a b C 

  

. 0 a b C 
0 0 0 0 0 0 0 0 0 0 
a a 0 a a a 0 0 0 a 
b b b 0 b b 0 0 0 b 
1 c c c 0 c 0 0 0 c 

 
Thus X2 is an S2-near subtraction semigroup but not subtraction semigroup 
 
Hence, every F- bi-near subtraction semi group need not be a bi-near subtraction semi group.                                    
    
4. RESULTS ON F-BI NEAR SUBTRACTION SEMIGROUP 

 
Theorem 4.1: The intersection of S1-near subtraction semigroup and S2-near subtraction semigroup is sub commutative 
near subtraction semigroup. 
 
Proof: Let X1 is an S1-near subtraction semigroup.  there exists x∈X1

* such that axa=xa.                                             (1) 
Let X2 is an S2-near subtraction semigroup, there exists x∈X2

* such that axa=ax                                                           (2) 
 
From (1) and (2), we get xa=ax 
Thus, X is a sub commutative near subtraction semigroup. 
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Theorem 4.2: Let X=X1∪X2  be a nil bi- near subtraction semigroup and Let X1 be a zero symmetric then X is a           
F-bi near Subtraction  Semigroup. 
 
Proof: Since X=X1∪X2 is a nil bi- near subtraction Semigroup. where X1  and X2 are nil near subtraction semigroup. 
 
Let a€ X1 Since X1 is nil, there exists a positive integer k ˃1 such that ak=0. 
 
Which implies that xa=0 where x=ak-1 

 
therefore axa-a(xa)=a(0)=0(since X1 is a zero-symmetric)=xa.  
 
Thus X1 is an S1-near subtraction semigroup. 
 
Let X2 be a nil near subtraction semigroup and let a∈ X2

*. 
 
Then exists a positive integer k˃1 such that ak = 0. We set x=ak-1≠0 
 
therefore ax=0. 
 
Now, axa=(ax)a=0a=0=ax. 
 
that is, axa=ax. 
 
Obviously, 0x0=0x for any x∈ X2

*. 
 
Thus X2 is an S2-near subtraction semigroup. 
 
Hence X is a F- bi near subtraction semigroup. 
 
Theorem 4.3: Let X be a F- bi near subtraction semigroup and X1 be a zero symmetric. If X has no non. zero zero 
devisors then the following are true. 

(i) Every ideal of X is a F-bi near Subtraction Semigroup. 
(ii) Every X-system of X is a F-bi near Subtraction Semigroup. 

 
Proof: Since X=X1∪X2 is a nil bi- near subtraction Semigroup. where X1 is an S1-near subtraction semigroup  and X2 is 
an S2-near subtraction semigroup. 
 
Let I1 be an ideal of X1 and let a∈ I1. 
 
If a=0 then ana=na for any n∈I1

*. 
 
Suppose a≠0. 
 
Since X1 is an S1-near subtraction semigroup.  there exists x∈X1

* such that axa=xa.  
 
If i=ax ∈ I1X1, since I1 is an ideal of X1 we get  i ∈I1.  
 
It follows from the hypothesis that i≠0 
 
Now, aia-a(ax)a=a(axa)= a(xa)= (ax)a=ia.  
 
Thus I1 is an S1-near subtraction semigroup. 
 
Let I2 be an ideal of X2 and let i be a non-zero element of I2. Since X2 is an S2-near subtraction semigroup, there exists 
y∈ X2

* such that iyi=iy                                                                                                                                                      (1) 
 
If we take n=iy clearly, n∈ I2. Our hypothesis demands that n≠0.  
 
Now,  ini=i(iy)i=i(iyi)=i(iy)(by (1))=in. 
 
that is, ini=in. 
 
Consequently I2 is an S2-near subtraction semigroup. 
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Therefore I= I1∪I2 where I1 is an S1-near subtraction semigroup and I2 is an S2-near subtraction semigroup. 
 
Hence I is a F-bi near Subtraction Semigroup. 
 
Let A1 be a X-system of X1 and A* =A-{0}. 
 
Let a∈ A* 

 
Since X1 is an S1-near subtraction semigroup. there exists x€ X1

* such that axa=xa.  
 
We take n=xa∈X1A1. 
 
Since A1 is an X-system of X1, n∈A1 
 
Since X1 has no non-zero devisors, n≠0. 
 
Now, ana=a(xa)a=(axa)a+(xa)a=na. If a=o then, since X1

 is zero-symmetric, ana=na for any n∈ A1
*. 

 
Thus A1 an S1-near subtraction semigroup. 
 
Let A2 be a X-system of X2 and let a be a non-zero element of X2. 
 
Since X2 is an S2-near subtraction semigroup, there exists y∈ X2

* such that aya=ay                                                       (2) 
 
If we put c=ya then c∈ X2A2.  
 
Since A2 is an X-system, we get c∈ A2. 
 
Since X2 has no non-zero devisors, c≠0. 
 
Now, aca=a(ya)a= (aya)a=(ay)a (by (2))=a(ya)=ac. 
 
that is, aca = ac. 
 
Consequently A2 is an S2-near subtraction semigroup. 
 
Therefore A= A1∪A2 where A1 is an S1-near subtraction semigroup and A2 is an S2-near subtraction semigroup. 
 
Hence A is a F-bi near Subtraction Semigroup. 
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