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ABSTRACT 
The aim this article is to explore the characterization of M-cyclic submodule. Let R be a ring. M and N are R-modules. 
A module N is called ECM-principally injective module (briefly, ECM-P-injective) if every R-homomorphism from 
essentially M-cyclic submodule of M to N, can be extended to M. In this paper we obtain to investigate some 
characteristics of M-principally injective module. Using the notion EC-M-cyclic submodule of M.  
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1. INTRODUCTION   
 
Through this paper, by a ring R we always mean as associative with identity and every R-module is unitary. The notion 
principally injective module was introduced by Camollo [9]. Nicholson, park and Yousif studied the structure of 
principally injective and Quasi- principally injective modules [10]. N is called M- principally injective if Tansee and 
Wongwai also extended this notion. A right R-module every R-homomorphism from an M-cyclic submodule of M to 
N, can be extended to M. A module M is called Quasi- principally injective if it is M- principally injective. A 
submodule K of M is called essential submodule if 0LK ≠  for every nonzero submodule L of M. In other words 
K ∩ N = 0 ⇒ K = 0 (briefly; K ≤e M). In this case M is called essential extension of K. A monomorphism MK:f →  
is said to be essential if Mimf e≤ . A submodule K is called M-cyclic if K is image of element of S.                             
( (M)EndR=S denotes endomorphism ring of M). A submodule K is called essentially M-cyclic (briefly; EC-M-
cyclic) if it is the image of element of S and it’s inclusion map is essential. 
 
2. PRELIMINARY RESULTS 
 
In this section, we study of essential submodule. 
 
Lemma.2.1: Let M, N be right R-modules and let f: N → M be a homomorphism, if M’ is an essential sub module of 
N, then f-1(M’) is essential sub module of N. 
 
Proposition 2.1: Let K and N be sub modules of an R-module M. Then  

(i) K ≤e M ⇔ K ≤e N and N ≤e M. 
(ii) K ≤e M ⇔ K ∩ Rm ≠ 0    ∀ 0 ≠ m ∈ M. 
(iii) Given K ⊂ N if N/K ≤e M/K then N ≤e M. 
(iv) K ∩ N ≤e M ⇔ K ≤e M and N ≤e M. 
(v) If K ≤e M then K ∩ N ≤e M. 
(vi) K ≤e M ⇔ for each 0 ≠ m∈M ∃ an r ∈ R such that 0 ≠ mr ∈ K. 
(vii) K1 ⊕ K2 ≤e M1 ⊕ M2 ⇔ K1 ≤e M1 and K2 ≤e M2 for each K1 ≤ M1 ≤ M and K2 ≤ M2 ≤ M. 
(viii) If M = ⊕i=1 

n Mi and Ki ≤ Mi for each i ∈ I, then = ⊕i=1 
nNi ≤e M. 
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Proof: 
 i)   Given that K ≤ N and K ∩ L = 0, K ≤ M. Clearly L ≤ N ≤ M ⇒ L ≤ M. Since K ≤e M, then K ∩L = 0 ⇒ L = 0      
      implies K ≤e N. Let T ≤ M such that N ∩ T = 0, K ∩ T ≤ N ∩ T = 0  
     ⇒ N ∩ T = 0, since K ≤e M, then T = 0 ⇒ N ≤e M. Conversely, Let K ∩ S = 0 for some S ≤ M  
     ⇒ K ∩ (S ∩ N) = 0. Since K ≤e N and S ∩ N ≤ N, S ∩ N = 0 with N ≤e M ⇒ S = 0 so K ≤e M. 
ii)  We have N ∩ K ≤ N ≤ M, Since N ∩ K ≤e M ⇒ N ≤e M. Similarly N ∩ K ≤ N ≤ M, Since N ∩ K ≤e M ⇒ K ≤e M.  
     Similarly N ≤e M, K ≤e M. To prove N ∩ K ≤e M. Let (N ∩ K) ∩ T = 0 for some T ≤ M ⇒ N ∩ (K ∩ T) = 0,             
     since N ≤e M ⇒ K ∩ T = 0 and also K ≤e M, therefore T = 0, by (i) we get  K ∩ N ≤e M. 
iii) and iv) [1]. 
v). Let (K ∩ N) ∩ T = 0  for some T ≤ K ≤ M, therefore  K ∩ ( N ∩ T) = 0, since K ≤e M and N ∩ T ≤ 0 ⇒ N ∩ T = 0    
     and N ∩ T = T ⇒ T = 0, Hence K ∩ N ≤e N. 
vii) and viii) [1]. //  
 
3. ECM-P-INJECTIVE MODULE 
  
Definition 3.1: An R-module N is called essential M-principally injective module (ECM-P-injective), if every R-
homomorphism from EC-M-cyclic submodule K of M to N, can be extended to M, in general the following diagram is 
commutative,  

N
h

MK0 i

φ↓

→→

 

Fig.-1 
i.e. Φ.i = h. where ϕ ∈ EndR(M) and K = ϕ(M) ≤e M. 
 
Example 3.1:  

(i) Z is essential sub module of the Z-module Q, is cyclic, but not Q-cyclic, for every non zero homomorphism    
f: Q → Q is an epimorphism. 

(ii) Let M = Z1⊕ Z2⊕ Z3 is a z-module, since M/Z3 = Z2⊕ Z2, then Z2⊕ Z2 is EC-M-cyclic, but Z2⊕ Z2 is not 
cyclic. 

(M-cyclic submodule and cyclic module both are completely different concepts) 
 

Lemma 3.1: Let M and N be R-modules. Then N is ECM-P-injective if and only if for each s ∈ S = EndR(M).     
{ }0f(kers):N)(M,Hom:fN)(M,Hom RSR ==  

 
Proof: Assume that N is ECM-P-injective module. We want to show that  

{ }0f(kers):N)(M,Hom:fN)(M,Hom RSR ==  

It is clear that                              { }0f(kers):N)(M,Hom:fN)(M,Hom RSR =⊆  
 
Let N)(M,Hom f R∈ such that 0f(kers) =  ⇒ kers kerf.⊂  Then there is an homomorphism Ms(M):i →
such that fi.s = . Since N is ECM-P-injective module.  

 

N
h

Ms(M)0
φ↓

→→ i

 
Fig.-2 

 
There exists an R-homomorphism NM: →φ such that h.i =φ where the inclusion map Ms(M):i → is essential 

monomorphism with s(M)  is large M-cyclic submodule of M. Then N)(M,Homφs R∈ and kers ∈kerϕs                 
⇒ 0φs(kers) = . By assumption u[i(s(M))]u[s(M)]φs(M) ==  ⇒  us(M) is also large M-cyclic submodule of 
M. This show that N is ECM-P-injective module.// 
 
Theorem 3.1: Let M and N be R-modules. Then M is N-Principally projective module and every EC-M-cyclic 
submodule of N is ECM-P-injective if and only if Nis ECM-P-injective module and EC-M-cyclic submodule of M is 
ECM-P-injective. 
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Proof: Let M be N-Principally projective module and suppose that every EC-M-cyclic submodule of N is ECM-P-
injective. Since n is trivially M-cyclic, so N is ECM-P-injective. Let (M)Endφ R∈ .  

 

 
Let LM:ν → be small epimorphism and let Lφ(M):h → be any homomorphism, where φ(M)  is EC-M-cyclic 
submodule of M.  
 
Consider the diagram: 

i

ν

0φ(M) M

N L 0
g h l
→ →

↓
→ →

 

Fig.-3 
 
Where Mφ(M) :i → is an inclusion monomorphism, implies Mφ(M) e≤ . we have L is M-cyclic i.e.  L is ECM-

injective. There exists an epimorphism LM:l →  such that h l.i = and the sequence 0LMφ(M)0 li →→→→  
is exact. Since M is N-projective module this implies, so there exists an homomorphism  NM :t → such that lν.t =
and the map  Nφ(M):g → such that t.ig = . 
 
Now hl.iν.t.iν.g === . This shows that every M-cyclic sub module of M is N-P projective. 
 
Conversely, suppose that every M-cyclic sub module of M is N-P projective and N is ECM-P-injective. 
 
Consider the diagram: 

i

ν

0φ(M) M

N B 0
g h l
→ →

↓
→ →

 

Fig.-4 
 
where Mφ(M):i → is inclusion monomorphism and Bφ(M):h → is any homomorphism, BM:g → is an 
required small epimorphism. Since φ(M)  is N-projective module, thus there exists a homomorphism Nφ(M):g →
such that hν.g = . But N is ECM-P-injective, so there is an homomorphism NM:t → such that gt.i = , Define 

NM:l → by ν.tl = . Now h.ν.gν.t.il.i ===  
 
Theorem 3.2: The following are equivalent for a projective module M. 

(i) Every small M-cyclic sub module of M is projective.  
(ii) Every factor module of an ECM-P-injective is ECM-P-injective. 
(iii) Every factor module of an injective R-module is ECM-P-injective.  

 
Proof:  
(i) ⇒ (ii): Let N be an ECM-injective module, X is small M-cyclic sub module of N. let (M)Ends R∈ . Consider the 
diagram: 

X
NNX

φφ̂
s(M)keri0Ms(M)

η

i

→→

↓

→→ 

 

Fig.-5 
 
Let XN /s(M):φ → be an R-homomorphism by (i) there exists an R- homomorphism Ns(M):φ̂ → such that

φ̂η.φ = . Where XN /N:η → is the natural epimorphism. Since N is ECM-P-injective, there exists an R- 

homomorphism NM:t → , which is essential extension of φ̂ to M. Then μ.t is essential extension of to M i.e. factor 
module is ECM-P-injective. 
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(ii) ⇒(iii): Clear.  
 
(iii) ⇒  (i): Let s(M) be an small M-cyclic sub module of M and BA:h → is an epimorphism and let Bs(M):α →  
be an homomorphism imbed A in an injective module E. A/kerhB ≅ is a submodule of LMP-injective module 
E/kerh.  Let a map E/kerhs(M):α → by hypothesis we can extend E/kerhM:α̂ → . Since M is projective, α̂  
can be lifted to EM:g → such that α̂η.g = where η is natural map. It is clear that Ag(s(M)) ⊂ . Therefore we 
have lifted α,  Implies every small M- cyclic sub module of  is projective.// 
 
4. EC- PSEUDO QUASI- PRINCIPALLY INJECTIVE MODULE (EC-PQ-P-INJECTIVE MODULE) 
 
Definition 4.1: Let M be right R-module. A right R-module N is called essentially pseudo-M-principally injective 
module (EC-PM-P- injective)  if every R- monomorphism from EC-M-cyclic submodule of M to N can be extended to 
an (M)EndR . The module M is called essentially pseudo Quasi- principally injective module.  
 
Lemma 4.1: Every EC-X-cyclic submodule of X is an EC-M-cyclic submodule of M for every EC-M-cyclic 
submodule X of M. 
 
Proof: [11].  
 
Proposition 4.1: N is EC-PM-P-injective if and only if N is EC-PX-P-injective foe every EC-M-cyclic sub module of 
M. 
 
Proof: ⇒ Let s(M)X = is an EC-M-cyclic sub module of M. t(X) is a EC-X-cyclic submodule of X and let 

Nt(X):φ → be an R-essential monomorphism. Since Sst ∈, and t(X)t(M) = . Since N is EC-PM-P-injective, 

there exists an R-homomorphism NM:α̂ → such that 21.t.tα̂α =  
 

N
ˆ
MXt(X) 12 tt

αα ↓

→→

 
Where MX:t1 → , Xt(X):t2 → both are inclusion monomorphisms. Then 2.tα̂ is the extension of α. [5. pro. 
5.12] N is EC-PM-P-injective. 
⇐    it is clear.// 
 
Theorem 4.1: Let M be a right R-Module. Then M is EC-PQ-P-injective if and only if kerikers = , 

 (M)EndSis, R=∈ implies SiSs = . 
 
Proof: Let Sis, ∈ with kerikers = . The map Ms(M):φ → define by i(m)φ(s(m)) = for every m ∈M. to show 

that φ is essential monomorphism. Let s(M))s(m),s(m 21 ∈  such that ))φ(s(m))φ(s(m 21 = . Then 

)i(m)i(m)φs(m)φs(m 2121 =⇒= for every i ∈M. 

⇒ 0)i(m)i(m 21 =−   ⇒  iker)m-(m 21 ∈   ⇒  kerskerimm 21 =∈−  ⇒  0)ms(m 21 =−    

⇒ )s(m)s(m 21 =   ⇒  ))φ(s(m))φ(s(m 21 =  
⇒ )i(m)i(m 21 =   
⇒ φ is essential monomorphism. 
 
Since m is EC-PQ-P-injective and s(M) is EC-M-cyclic submodule of M, there exists an R-homomorphism 

( )φ̂:s M M→ such that .iφ̂φ =  

M
φ̂φ

Ms(M)0 i

↓

→→

 

Where Ms(M):i → is an inclusion monomorphism. Thus Ss.sφ̂.i.sφ̂φ.si ∈=== . 
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Then SsSi ⊂  similarly SiSs ⊂ . Therefore SiSs = . 
 
Conversely, obvious by lemma 1.1. 
 
Theorem 4.2: Let M be EC-PQ-P-injective module. If A is a direct summand of M, then A is EC-PM-P-injective.  
 
Proof: Let A be a direct summand of M. Let MA:j → be injection mapping i.e. MAs(M)0 ji →→→    To 
show that 0ker(j.i) = . Let ker(j.i)s(m)∈  for every m ∈ M. Then 0)(j.i)(s(m) =   ⇒ 0i(s(m)j(i(s(m)) ==
⇒ 0i(s(m) = ⇒ keris(m)∈  ⇒ 0s(m) = , (because i is monic). Then Ms(M):j.i → is an essential 
monomorphism [5. pro 5.2]. Since M is a EC-PQ-P-injective and s(M) is EC- M-cyclic submodule of M, there exists an 
homomorphism MM:î → such that .tîi.α = , where Ms(M):t → is the inclusion monomorphism. Let 

AM:π →  be projection map. Then .tîπ.π.j.i = . Since AIπ.i = and .tîπ.j = . Therefore îπ. is extension of α. 
This shows A is EC-PM-P-injective. // 
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