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ABSTRACT 
When we introduced Artex Spaces over bi-monoids, we gave many examples. Many propositions were found and 
proved. As a development of it we introduced SubArtex Spaces of Artex Spaces over bi-monoids. Many propositions 
and results were found and proved in SubArtex Spaces of Artex Spaces over bi-monoids. Now for an Artex Space       
(A, Ʌ,  V) over a bi-monoid (M, +, .) and  a SubArtex space S of A and for mϵM, mǂ0, we define the bi -monoid 
multiplication  on S. We prove some propositions. The bi-monoid multiplication on S is a subset of S and it is a 
SubArtex space of A. We give some examples. 
 
Keywords: Bi-monoids, Bi-commutative monoids, Artex Spaces over bi-monoids, SubArtex Spaces of Artex Spaces over 
bi-monoids. 
                                                       
 
1. INTRODUCTION 
 
Groups of transformations play an important role in geometry The theory of Groups is one of the richest branches of 
abstract algebra. A more general concept than that of a group is that of a semi-group. The algebraic system Bi-semi-
group is more general to the algebraic system ring or an associative ring. We consider the algebraic system Bi-monoid 
in one side and a lattice in another side. Why don’t a bi-monoid act on a lattice? The answer gave the idea to define an 
Artex space over a bi-monoid. We introduced Artex Spaces over Bi-monoids. We gave many interesting examples. 
Many propositions were found and proved. This theory was developed from the Lattice theory and Linear Algebra. 
George Boole introduced Boolean Algebra in 1854. A more general algebraic system is the lattice. A Boolean Algebra 
is then introduced as a special lattice. Lattices and Boolean algebra have important applications in the theory and design 
of computers. There are many other areas such as engineering and science to which Boolean algebra is applied.  
 
As the theory of Artex spaces over bi-monoids is developed from lattice theory, this theory will play a good role in 
many fields especially in science and engineering and in computer fields. In Discrete Mathematics this theory will 
create a new dimension. A theory will help or will be useful or can lead other theories, if the theory itself is developed 
in its own way. As a development of Artex Spaces over Bi-monoids, we introduced SubArtex spaces of Artex spaces 
over bi-monoids. From the definition of a SubArtex space, it is clear that not every subset of an Artex space over a bi-
monoid is a SubArtex space. We found and proved some propositions which qualify subsets to become SubArtex 
Spaces.  Now we define the bi-monoid multiplication on S. We prove some propositions. These propositions will have 
important applications for the development of the theory of Artex spaces over bi-monoids.  
 
2. PRELIMINARIES 
 
2.1 Partial Ordering: A relation ≤ on a set P is called a partial order relation or a partial ordering in P if  

(i) a ≤ a, for all aϵP ie   ≤ is reflexive, 
(ii) a ≤ b and b ≤ a implies a = b ie  ≤ is anti-symmetric, and  
(iii) a ≤ b and b ≤ c implies a ≤ c  ie  ≤ is transitive. 
 

2.2 Partially Ordered Set (POSET): If ≤ is a partial ordering in P, then the ordered pair (P, ≤) is called a Partially 
Ordered Set or simply a POSET.   
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2.3 Lattice: A lattice is a partially ordered set (L, ≤) in which every pair of elements a, b ϵ L has a greatest lower bound 
and a least upper bound. 
 
The greatest lower bound of a and b is denoted by aɅb and the least upper bound of a and b is denoted by aVb  
 
2.4 Lattice as an Algebraic System: A lattice is an algebraic system (L, Ʌ, V) with two binary operations Ʌ and V on 
L which are both commutative, associative, and satisfy the absorption laws namely aɅ(aVb) = a and  aV(aɅb) = a, for 
all a, bϵL 
 
The operations Ʌ and V are called cap and cup respectively, or sometimes meet and join respectively. 
 
2.5 Semi-group: A non-empty set S together with a binary operation. is called a Semi-group if for all a, b, c ϵ S,         
a.(b . c) = (a.b).c    
 
2.6 Monoid: A non-empty set N together with a binary operation. is called a monoid if 

(i) for all a, b, c ϵ N,  a.(b . c) = (a.b).c   and 
(ii) there exists an element denoted by e in N such that a.e = a = e.a, for all a ϵ N.                                                                                        

The element e is called the identity element of the monoid N. 
 
2.7 Doubly Closed Space: A non-empty set D together with two binary operations denoted by + and . is called a 
Doubly Closed Space if  

(i) a.(b+c) = a.b + a.c and  
(ii) (a+b).c = a.c + b.c, for all a, b, c ϵ D 

              A Doubly closed space is denoted by (D, +, .) 
 
Note 1: The axioms (i) a.(b+c) = a.b + a.c and (ii) (a+b).c = a.c + b.c, for all a, b, c ϵ D are called the distributive 
properties of the Doubly Closed Space. 
 
Note 2: The operations + and . need not be the usual addition and usual multiplication respectively. 

 
2.7.1 Example:  Let N be the set of all natural numbers.  
 
Then (N, +, .), where + is the usual addition and . is the usual multiplication, is a Doubly closed space. 
 
2.7.2 Example: Let r ϵ N 
 
Let Nr = {r, r+1, r+2, r+3,…..} 
 
Then (Nr, +, .), where + is the usual addition and . is the usual multiplication, is a Doubly closed space. 

 
2.7.3 Example: (Z, +, –), where + is the usual addition and  – is the usual subtraction, is not a  Doubly closed space. 
 
Even though + and – are binary operations in Z, (Z, +, –) is not a Doubly closed space because of the distributive 
properties of the Doubly Closed Space. 
 
Take a = 15, b = 7, c = 4 
 
Then a – (b + c) = 15 – (7 + 4) 
                           = 15 – 11 
                           = 4 
 
But (a – b) + (a – c) = (15 – 7) + (15 – 4) 
                                 = 8 + 11 
                                 = 19 
 
Therefore, a – (b + c) ǂ (a – b) + (a – c) 
 
Therefore, (Z, +, –) is not a Doubly closed space. 

 
2.8 Bi-semi-group: A Doubly closed space (S, +, .) is called a Bi-semi-group if + and . are associative in D. 
 
2.8.1 Example: (N, +, .), (Z, +, .), (Q, +, .), (R, +, .), and (C, +, .), where + is the usual addition  and  . is the usual 
multiplication, are all Bi-semi-groups. 
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2.8.2 Example: For r ≥ 1, (Qr, +, .), where + is the usual addition and . is the usual multiplication, is a a Bi-semi-group. 

 
2.9 Bi-monoid: A Bi-semi-group (M, +, .) is called a Bi-monoid if there exist elements denoted by 0 and 1 in S such 
that a+0=a=0+a, for all aϵM   and a.1=a=1.a, for all aϵM . 
 
The element 0 is called the identity element of M with respect to the binary operation + and the element 1 is called the 
identity element of M with respect to the binary operation.. 

 
2.9.1 Example: Let W = {0, 1, 2, 3,…} 
 
Then (W, +,  .), where + is the usual addition and . is the usual multiplication, is a Bi-monoid. 
 
2.9.2 Example: Let Q’= Q+ ∪{0}, where Q+ is the set of all positive rational numbers. Then (Q’, +, .) is a bi-monoid. 
 
2.9.3 Example: R’= R+ ∪{0}, where R+ is the set of all positive real numbers. Then (R’, +, .) is a bi-monoid. 
 
2.9.4 Example: (Z, +, .), (Q, +, .), (R, +, .), and (C, +, .), where + is the usual addition  and  . is the usual multiplication, 
are all Bi-monoids. 
 
2.9.5 Example: Let S be a non-empty set. Consider P(S), the power set of S. 
 
Clearly (P(S), ∪, ∩), where ∪ denotes the union of sets and ∩ denotes the intersection of sets, is a Bi-semi-group. Now 
for any A ϵ P(S), A∪φ = A = φ∪A 
 
Therefore, the empty set φ acts as the identity element of P(S) with respect to ∪.   
 
Now for any A ϵ P(S), A∩S = A = S∩A 
 
Therefore, the universal set S acts as the identity element of P(S) with respect to ∩  
 
Hence (P(S), ∪, ∩) is a Bi-monoid. 
 
2.10 Bi-commutative monoid: A Bi-monoid (M, +, .) is called a Bi-commutative monoid if  a+b = b+a, for all a, b ϵ M 
and    a.b = b.a, for all a,b ϵ M.  
 
2.10.1 Example: Let W={0, 1, 2, 3,…}. Then (W, +, .), where + is the usual addition and . is the usual multiplication, 
is a Bi-commutative monoid. 
 
2.10.2 Example: Let Q’= Q+ ∪{0}, where Q+ is the set of all positive rational numbers. Then (Q’, +, .) is a Bi-
commutative monoid. 
 
2.10.3 Example: R’= R+ ᴜ {0}, where R+ is the set of all positive real numbers. Then (R’, +,  .) is a Bi-commutative 
monoid. 
 
2.10.4 Example: (Z, +, .), (Q, +, .), (R, +, .), and (C, +, .), where + is the usual addition and . is the usual multiplication, 
are all Bi-commutative monoids. 
 
2.11 Artex Space Over a Bi-monoid: Let (M, +, .) be a bi-monoid with the  identity elements 0 and 1 with respect to + 
and . respectively. A non-empty set A together with two binary operations  ^  and  v  is said to be an Artex Space Over 
the Bi-monoid  (M, +, .) if  
1. (A, Ʌ , V) is a lattice and 
2. for each mϵM, mǂ0, and aϵA, there exists an element ma ϵ A satisfying the following conditions: 

(i) m(a Ʌ b) = ma Ʌ mb 
(ii) m(a V b) = ma V mb 
(iii) ma Ʌ na ≤ (m +n)a     and   ma V na ≤ (m + n)a   
(iv) (mn)a = m(na), for all m, nϵM, mǂ0, nǂ0, and a, bϵA              
(v) 1.a = a, for all a ϵ A.  

Here, ≤ is the partial order relation corresponding to the lattice (A, Ʌ, V) and  
 
The multiplication ma is called a bi-monoid multiplication with an artex element or simply bi-monoid 
multiplication in A.  
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Unless otherwise stated A remains as an Artex space with the partial ordering ≤ which need not be “less than or equal 
to” and M as a bi-monoid with the binary operations + and . where + need not be the usual addition and . + need not be 
the usual multiplication.      
 
2.11.1 Example: Let W = {0, 1, 2, 3,…}. 
 
Then (W, +, .) is a bi-monoid, where + and . are the usual addition and multiplication respectively. 
 
Let Z be the set of all integers 
 
Then (Z, ≤) is a lattice in which Ʌ and V are defined by a Ʌ b = minimum of {a, b} and a V b = maximum of {a, b}, for 
all a, b ϵ Z. 
 
Clearly for each mϵW, mǂ0, and for each aϵZ,  maϵZ. 
 
Also,  

(i) m(a Ʌ b) = ma Ʌ mb 
(ii) m(a V b) = ma V mb 
(iii) ma Ʌ na ≤ (m +n)a      and  ma V na ≤ (m + n)a 
(iv) (mn)a = m(na) 
(v)  1.a = a, for all m, nϵW, m ǂ 0, n ǂ 0 and a, bϵZ 

              Therefore, Z is an Artex Space Over the Bi-monoid (W, +, .) 
 
2.11.2 Example: As defined in Example 2.11.1, Q, the set of all rational numbers is an Artex space over W 
 
2.12 SubArtex Space: Let (A, Ʌ,  V) be an Artex space over a bi-monoid (M, +,  .). Let S be a nonempty subset of A. 
Then S is said to be a SubArtex Space of A if (S, Ʌ, V) itself  is an Artex Space over M. 
 
2.12.1 Example: Z is an Artex Space over W = {0, 1, 2, 3,….} and W is a subset of Z. 
 
Also W itself is an Artex space over W under the operations defined in Z 
 
Therefore, W is a SubArtex space of Z.      
 
2.12.2 Example:  Q is an Artex space over W = {0, 1, 2, 3,…..}. Z is a subset of Q. 
 
Clearly Z itself is an Artex Space over W and therefore Z is a SubArtex Space of Q. W is also a SubArtex Space of Q. 
 
2.13 Propositions 
 
Proposition 2.13.1: Let (A, Ʌ,  V) be an Artex Space over a bi-monoid (M, +, .). Then a nonempty subset S of A is a 
SubArtex Space of A if and only if S is closed under the operations Ʌ, V and the bi-monoid multiplication in A. 
 
Proposition 2.13.2: Let (A, Ʌ,  V) be an Artex space over a bi-monoid (M, +, .). Then a nonempty subset S of A is a 
SubArtex space of A if and only if for each m, n ϵ M, mǂ0, nǂ0, and a, b ϵS, ma Ʌ nb ϵ S and  ma V nb ϵ S 
 
3. BI-MONOID MULTIPLICATION ON SUBARTEX SPACES 
 
3.1 Bi-monoid Multiplication On a SubArtex Space: Let (A, Ʌ, V) be an Artex space over a bi-monoid (M, +, .). Let 
S be a SubArtex space of A. Let m ϵ M, mǂ0.  Then the bi-monoid multiplication on S is defined by mS = {ms / s ϵ S}. 
 
Proposition 3.1.1: Let (A, Ʌ, V) be an Artex space over a bi- monoid (M, +, .). Let S be a SubArtex space of A. Then 
for each m ϵ M, mǂ0, mS ⊆ S. 
 
Proof: Let (A, Ʌ, V) be an Artex space over a bi-monoid (M, +, .).  
 
Let S be a SubArtex space of A.  
 
Let m ϵ M, mǂ0. 
 
Now mS = {ms / s ϵ S}. 
 
Since S is a SubArtex space of A, S ǂ ɸ. 
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Therefore, there exists an element, say s, in S. 
                                                 => ms ϵ mS. 
Therefore, mS ǂ ɸ. 
 
Let x ϵ mS. 
 
Then x = ms, for some s ϵ S. 
 
Since S is a SubArtex space of A and m ϵ M, mǂ0 and sϵ S, msϵ S. 
 
That is, x ϵ mS  
 
Therefore, mS ⊆ S. 
 
Hence for each m ϵ M, mǂ0, mS ⊆ S. 
 
Proposition 3.1.2: Let (A, Ʌ, V) be an Artex space over a bi-commutative monoid (M, +, .). Let S be a SubArtex space 
of A. Then for each m ϵ M, mǂ0, mS is a SubArtex space of A.  
 
Proof: Let (A, Ʌ, V) be an Artex space over a bi-commutative monoid (M, +, .). Let S be a SubArtex space of A.  
 
Let m ϵ M, mǂ0. 
 
Now mS = {ms / s ϵ S }. 
 
Since S is a SubArtex space of A, S ǂ ɸ. 
 
Therefore, there exists an element, say s, in S. 
                                                  => ms ϵ mS. 
 
Therefore, mS ǂ ɸ. 
 
By the Proposition 2.13.2  it is enough to show that for each k, n ϵ M, kǂ0, nǂ0, and x, y ϵ mS, kx Ʌ ny ϵ mS and kx       
V ny ϵ mS. 
 
Let k, n ϵ M, kǂ0, nǂ0, and x, y ϵ mS, 
 
Then x = ms1 and y = ms2, for some s1,s2 ϵ S. 
kx Ʌ ny = k(ms1) Ʌ n(ms2) 
              = (km)s1 Ʌ (nm)s2 
              = (mk)s1 Ʌ (mn)s2, (Since (M, +, .) is a bi-commutative monoid, km = mk and nm = mn) 
              = (mk)s1 Ʌ (mn)s2, 
              = m((ks1) Ʌ (ns2)) 
 
Since S is a SubArtex space of A, k, n ϵ M, kǂ0, nǂ0, and s1, s2 ϵ S, (ks1) Ʌ (ns2) ϵ S. 
 
Therefore, m((ks1) Ʌ (ns2)) ϵ mS. 
 
That is, kx Ʌ ny ϵ mS. 
 
Let k, n ϵ M, kǂ0, nǂ0, and x, y ϵ mS, 
 
Then x = ms1 and y = ms2, for some s1,s2 ϵ S. 
 kx V ny = k(ms1) V n(ms2) 
               = (km)s1 V (nm)s2 
               = (mk)s1 V (mn)s2,  (Since (M, +, .) is a bi-commutative monoid, km = mk and nm = mn) 

= (mk)s1 V (mn)s2, 
= m((ks1) V (ns2)) 

 
Since S is a SubArtex space of A, k, n ϵ M, kǂ0, nǂ0, and s1,s2 ϵ S, (ks1) V (ns2) ϵ S. 
 
Therefore, m((ks1) V (ns2)) ϵ mS. 
 



K. Muthukumaran* / Bi-Monoid Multiplication on Subartex Spaces / IRJPA- 5(9), Sept.-2015. 

© 2015, RJPA. All Rights Reserved                                                                                                                                                                       146 

 
That is, kx V ny ϵ mS. 
 
Hence for each m ϵ M, mǂ0, mS is a SubArtex space of A. 
 
Proposition 3.1.3: Let (A, Ʌ, V) be an Artex space over a bi- monoid (M, +,  .).  
 
Let S be a SubArtex space of A. Then for each m, n ϵ M, mǂ0, nǂ0  
m(nS) = (mn)S. 
 
Proof: Let (A, Ʌ, V) be an Artex space over a bi- monoid (M, +,  .).  
 
Let S be a SubArtex space of A.  
 
Let m, n ϵ M, mǂ0, nǂ0  
 
Let x ϵ m(nS) 
 
Then x = m(ns) , for some s ϵ S 
            = (mn)s, (since m, n ϵ M and M is a bi-monoid). 
 
Therefore, m(nS) = (mn)S. 
 
Proposition 3.1.4: Let (A, Ʌ,  V) be an Artex space over a bi-commutative monoid (M, +,  .). Let S be a SubArtex 
space of A. Then for each m, n ϵ M, mǂ0, nǂ0, m(nS) = n(mS). 
 
Proof: Let (A, Ʌ, V) be an Artex space over a bi- monoid (M, +,  .).  
 
Let S be a SubArtex space of A.  
 
Let m,n ϵ M, mǂ0, nǂ0  
 
Let x ϵ m(nS) 
 
Then x = m(ns), for some sϵS 
            = (mn)s, 
            = (nm)s, (since m,n ϵ M and M is a bi-commutative monoid). 
            = n(ms) 
 
Therefore, x ϵ n(mS) 
 
Therefore, m(nS) ⊆  n(mS). 
 
Conversely, let x ϵ n(mS) 
 
Then x = n(ms) , for some s ϵ S 
            = (nm)s, 
            = (mn)s, (since m, n ϵ M and M is a bi-commutative monoid). 
            = m(ns) 
 
Therefore, x ϵ m(nS) 
 
Therefore, n(mS) ⊆  m(nS). 
 
Therefore, for each m,n ϵ M, mǂ0, nǂ0  
 
Hence  m(nS) = n(mS). 
 
3.2 Examples 
 
3.2.1 Example:  Let W = {0, 1, 2, 3,…}. 
Then (W, +, .) is a bi-commutative monoid, where + and . are the usual addition and multiplication respectively. 
 
Let Q be the set of all rational numbers 
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Then (Q, ≤ ) is a lattice in which Ʌ and V are defined by a Ʌ b = minimum of {a,  b} and a V b = maximum of {a, b}, 
for all a, b ϵ Q. 
 
Clearly for each mϵW, mǂ0, and for each a ϵ Q, ma ϵ Q. 
 
Also,  

(i) m(a Ʌ b) = ma Ʌ mb 
(ii) m(a V b) = ma V mb 
(iii) ma Ʌ na ≤ (m +n)a   and  ma V na ≤ (m + n)a 

       (iv) (mn)a = m(na) 
       (v)  1.a = a, for all m, nϵW, m ǂ 0, n ǂ 0 and a, bϵ Q 
 
Therefore, Q is an Artex Space Over the Bi-commutative monoid (W, +,  .) 
 
Let Z be the set of all integers 
 
Then Z itself is an Artex Space Over the Bi-commutative monoid (W, +,  .) and hence is a SubArtex space of Q. 
 
For any m ϵ W, mǂ0, mZ ⊆ Z 
 
Also mZ is a SubArtex space of Q. 

 
3.2.2 Example: Let R’ = R+ ∪{0}, where R+ is the set of all positive real numbers  and let w = {0, 1, 2,...}(R’, ≤) is a 
lattice in which Ʌ and V are defined by a Ʌ b = mini {a, b} and                     
a V b = maxi {a, b}, for all a, b ϵ R’. 
 
Here ma is the usual multiplication of a by m. 
 
Clearly for each m ϵ W, mǂ0, and for each a ϵ R’, ma ϵ R’. 
 
Also,    

(i) m(a Ʌ b) = ma Ʌ mb          
(ii) m(a V b) = ma V mb 
(iii) ma Ʌ na ≤ (m +n)a  and  ma V na ≤ (m + n)a          
(iv) (mn)a = m(na) , for all m, n ϵ W, mǂ0, nǂ0, and a, b ϵ R’                     
(v) 1.a = a,  for all a ϵ R’                                              

 
Therefore, R’ is an Artex Space Over the bi-monoid (W, +,  .)  
 
Generally, if Ʌ 1, Ʌ 2, and  Ʌ 3 are the cap operations of A, B and C respectively and if V1, V2, and V3 are the cup 
operations of A , B and C respectively, then the cap of A×B×C  denoted by Ʌ and the cup of A×B×C denoted by V are 
defined by                                                                                                     
x Ʌ y =(a1,b1,c1) Ʌ (a2,b2, c2) =  (a1 Ʌ1a2 , b1 Ʌ2b2  c1Ʌ3c2)  and                                               
x V y =(a1,b1,c1) V (a2,b2, c2) = (a1 V1a2, b1 V2b2, c1V3c2)                                                 
 
Here, Ʌ1, Ʌ2, and Ʌ 3 denote the same meaning minimum of two elements in R’ and V1, V2, and V3 denote the same 
meaning maximum of two elements in R’ 
 
R’3 = R’×R’×R’ is an Artex Space over W, where cap and cup operations are denoted by Ʌ and V respectively.  
 
Let S = {(a, 0, 0) / aϵR’}  
 
Claim: S is a SubArtex Space of R’3 
 
Let m, nϵW, and mǂ0, nǂ0, and x, y ϵ S, where x = (a1, 0, 0) and y = (a2, 0, 0), a1, a2ϵR’ 

 
Now,       mx Ʌ ny = m(a1, 0, 0) Ʌ n(a2, 0, 0)            
                               = (ma1, m0, m0) Ʌ (na2, n0, n0) 
                               = (ma1, 0, 0) Ʌ (na2, 0, 0) 
                               = (ma1Ʌ1na2, 0 Ʌ20, 0 Ʌ30) 
                               = (ma1 Ʌ1na2, 0, 0) 
 
Since m, nϵW, mǂ0, nǂ0, and  a1, a2ϵR’, and R’ is an Artex space over W, ma1 Ʌ1na2 ϵ R’ 
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Therefore, (ma1 Ʌ1na2, 0, 0) ϵ S 
 
That is, mx Ʌ ny ϵ S  
 
Now        mx V ny = m(a1, 0, 0) V n(a2, 0, 0)            
                               = (ma1, m0, m0) V (na2, n0, n0) 
                               = (ma1, 0, 0) V (na2, 0, 0) 
                               = (ma1 V1na2, 0 V20, 0 V30) 
                               = (ma1 V1na2, 0, 0) 
 
Since m, nϵW, mǂ0, nǂ0, and a1, a2ϵR’, and R’ is an Artex space over W, ma1 V1na2 ϵ R’ 
 
Therefore, (ma1 V1na2, 0, 0) ϵ S 
 
That is, mx V ny ϵ S 
 
Therefore by Proposition 2.13.2, S is a SubArtex Space of R’3. 
 
Hence Claim.  
 
For any m ϵ W, mǂ0, mS = m {(a, 0, 0) / aϵR’}  
                                        = {m(a, 0, 0) / aϵR’}  
                                        = {(ma, 0, 0) / aϵR’}⊆S. 
 
Also mS is clearly a SubArtex Space of R’3. 
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