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ABSTRACT 
Let 𝑅𝑅 be a 2-torsion and 3-torsion free semiprime ring. Let 𝐷𝐷: (. , . ):𝑅𝑅 × 𝑅𝑅 → 𝑅𝑅and 𝐵𝐵(. , . ):𝑅𝑅 × 𝑅𝑅 → 𝑅𝑅be a symmetric 
left bi-derivation and symmetric bi-additive mapping. If𝐷𝐷(𝑑𝑑(𝑥𝑥), 𝑥𝑥) = 0 and 𝑑𝑑�𝑑𝑑(𝑥𝑥)� = 𝑓𝑓(𝑥𝑥)  holds for all 𝑥𝑥  in  𝑅𝑅 , 
where𝑑𝑑 be a trace of𝐷𝐷 and 𝑓𝑓 be a trace of 𝐵𝐵. In this case 𝐷𝐷 = 0. 
 
Key Words: Semiprime ring, Symmetric mapping, Trace, Symmetric bi-derivation, Symmetric bi-additive mapping, 
Symmetric left bi-derivation. 
 
 
INTRODUCTION 
 
The concept of a symmetric bi-derivation has been introduced by Gy. Maksa in [2], [3]. A classical result in the theory 
of centralizing mappings is a theorem first proved by E. Posner [5]. J. Vukman [6] has studied some results concerning 
symmetric bi-derivations on prime and semi prime rings. In this paper we proved some results in symmetric left         
bi-derivations on semiprime rings. 
 
Throughout this paper 𝑅𝑅 will be associative. We shall denote by 𝑍𝑍(𝑅𝑅) the center of a ring𝑅𝑅. Recall that a ring 𝑅𝑅 is 
semiprime if 𝑎𝑎𝑅𝑅𝑎𝑎 =  (0)  impliesthat  𝑎𝑎 = 0 . We shall write [𝑥𝑥,𝑦𝑦]  for 𝑥𝑥𝑦𝑦– 𝑦𝑦𝑥𝑥  and use the identities                   
[𝑥𝑥𝑦𝑦, 𝑧𝑧] = [𝑥𝑥, 𝑧𝑧]𝑦𝑦 + 𝑥𝑥[𝑦𝑦, 𝑧𝑧], [𝑥𝑥,𝑦𝑦𝑧𝑧] = [𝑥𝑥,𝑦𝑦]𝑧𝑧 + 𝑦𝑦[𝑥𝑥, 𝑧𝑧] .An additive map 𝑑𝑑:𝑅𝑅 → 𝑅𝑅  is called derivation if               
𝑑𝑑(𝑥𝑥𝑦𝑦) = 𝑑𝑑(𝑥𝑥)𝑦𝑦 + 𝑥𝑥𝑑𝑑(𝑦𝑦) holds for all 𝑥𝑥,𝑦𝑦 ∈ 𝑅𝑅 .A mapping 𝐵𝐵(. , . ):𝑅𝑅 × 𝑅𝑅 → 𝑅𝑅  is said to be symmetric if 𝐵𝐵(𝑥𝑥,𝑦𝑦) =
 𝐵𝐵(𝑦𝑦, 𝑥𝑥)  holds for all 𝑥𝑥,𝑦𝑦 ∈ 𝑅𝑅 .A mapping 𝑓𝑓:𝑅𝑅 → 𝑅𝑅  defined by 𝑓𝑓(𝑥𝑥) = 𝐵𝐵(𝑥𝑥, 𝑥𝑥) , where 𝐵𝐵(. , . ):𝑅𝑅 × 𝑅𝑅 → 𝑅𝑅  is a 
symmetric mapping, is called a trace of B. It is obvious that, in case 𝐵𝐵(. , . ):𝑅𝑅 × 𝑅𝑅 → 𝑅𝑅 is symmetric mapping which is 
also bi-additive (i. e. additive in both arguments) the trace of 𝐵𝐵  satisfies the relation𝑓𝑓(𝑥𝑥 + 𝑦𝑦) = 𝑓𝑓(𝑥𝑥) + 𝑓𝑓(𝑦𝑦) +
2𝐵𝐵(𝑥𝑥,𝑦𝑦), for all𝑥𝑥,𝑦𝑦 ∈ 𝑅𝑅.We shall use the fact that the trace of a symmetric bi-additive mapping is an even function. A 
symmetric bi-additive mapping 𝐷𝐷(. , . ):𝑅𝑅 × 𝑅𝑅 → 𝑅𝑅  is called a symmetric bi-derivation if 𝐷𝐷(𝑥𝑥𝑦𝑦, 𝑧𝑧) = 𝐷𝐷(𝑥𝑥, 𝑧𝑧)𝑦𝑦 +
𝑥𝑥𝐷𝐷(𝑦𝑦, 𝑧𝑧) is fulfilled for all 𝑥𝑥,𝑦𝑦, 𝑧𝑧 ∈ 𝑅𝑅 .Obviously, in this case also the relation𝐷𝐷(𝑥𝑥,𝑦𝑦𝑧𝑧) = 𝐷𝐷(𝑥𝑥,𝑦𝑦)𝑧𝑧 + 𝑦𝑦𝐷𝐷(𝑥𝑥, 𝑧𝑧) for 
all  𝑥𝑥,𝑦𝑦, 𝑧𝑧 ∈ 𝑅𝑅 . A symmetric bi-additive mapping 𝐷𝐷(. , . ):𝑅𝑅 × 𝑅𝑅 → 𝑅𝑅  is called a symmetric left bi-derivation if                           
𝐷𝐷(𝑥𝑥𝑦𝑦, 𝑧𝑧) = 𝑥𝑥𝐷𝐷(𝑦𝑦, 𝑧𝑧) + 𝑦𝑦𝐷𝐷(𝑥𝑥, 𝑧𝑧) for all 𝑥𝑥,𝑦𝑦, 𝑧𝑧 ∈ 𝑅𝑅 . Obviously, in this case also the relation 𝐷𝐷(𝑥𝑥,𝑦𝑦𝑧𝑧) = 𝑦𝑦𝐷𝐷(𝑥𝑥, 𝑧𝑧) +
𝑧𝑧𝐷𝐷(𝑥𝑥,𝑦𝑦) for all𝑥𝑥,𝑦𝑦, 𝑧𝑧 ∈ 𝑅𝑅. A mapping 𝑓𝑓:𝑅𝑅 → 𝑅𝑅 is said to be commuting on 𝑅𝑅 if [𝑓𝑓(𝑥𝑥), 𝑥𝑥] = 0 holds for all𝑥𝑥 ∈ 𝑅𝑅. A 
mapping 𝑓𝑓:𝑅𝑅 → 𝑅𝑅 is said to be centralizing on 𝑅𝑅 if [𝑓𝑓(𝑥𝑥), 𝑥𝑥] ∈ 𝑍𝑍(𝑅𝑅) is fulfilled for all𝑥𝑥 ∈ 𝑅𝑅. A ring 𝑅𝑅 is said to be      
n-torsion free if whenever   𝑛𝑛𝑎𝑎 = 0, with 𝑎𝑎 ∈ 𝑅𝑅, then 𝑎𝑎 = 0, where 𝑛𝑛 is nonzero integer. 

 
MAIN RESULTS  
 
Lemma 1: [4, Lemma 1] Let 𝑑𝑑 ∶  𝑅𝑅 → 𝑅𝑅 be a derivation, where 𝑅𝑅is a semiprime ring. Suppose that either  
(i)  𝑎𝑎𝑑𝑑(𝑥𝑥) =  0 , for all 𝑥𝑥 ∈ 𝑅𝑅 or  
(ii) 𝑑𝑑(𝑥𝑥)𝑎𝑎 = 0,  for all 𝑥𝑥 ∈ 𝑅𝑅 holds. In both the cases we have 𝑎𝑎 = 0or 𝑑𝑑 = 0. 
 
Lemma 2: [1, Lemma 3.10] Let 𝑅𝑅 be a semiprime ring of characteristic not two and let 𝑎𝑎, 𝑏𝑏 ∈ 𝑅𝑅 be a fixed elements. If 
𝑎𝑎𝑥𝑥𝑏𝑏 + 𝑏𝑏𝑥𝑥𝑎𝑎 = 0 is fulfilled for all 𝑥𝑥 ∈ 𝑅𝑅, then either 𝑎𝑎 = 0 or 𝑏𝑏 = 0. 
 
Theorem 1: Let 𝑅𝑅  be a 2-torsion free semiprime ring. Suppose there exists a symmetric left bi-derivation        
𝐷𝐷(. , . ):𝑅𝑅 × 𝑅𝑅 → 𝑅𝑅 such that 𝐷𝐷(𝑑𝑑(𝑥𝑥), 𝑥𝑥) = 0 holds for all 𝑥𝑥 ∈ 𝑅𝑅, where 𝑑𝑑be a trace of 𝐷𝐷. In this case 𝐷𝐷 = 0. 
 
Proof: We have 𝐷𝐷(𝑑𝑑(𝑥𝑥), 𝑥𝑥) = 0, for all 𝑥𝑥 ∈ 𝑅𝑅.                                          (1) 
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We replace 𝑑𝑑(𝑥𝑥) by 𝑑𝑑(𝑥𝑥)𝑦𝑦 in (1), we get 
𝐷𝐷(𝑑𝑑(𝑥𝑥)𝑦𝑦, 𝑥𝑥) = 0 
𝑑𝑑(𝑥𝑥)𝐷𝐷(𝑦𝑦, 𝑥𝑥) + 𝑦𝑦𝐷𝐷(𝑑𝑑(𝑥𝑥), 𝑥𝑥) = 0 
 
By using (1) in the above equation, we get  
𝑑𝑑(𝑥𝑥)𝐷𝐷(𝑦𝑦, 𝑥𝑥) = 0 
𝑑𝑑(𝑥𝑥)𝐷𝐷(𝑥𝑥,𝑦𝑦) = 0, for all 𝑥𝑥,𝑦𝑦 ∈ 𝑅𝑅.                                           (2) 
 
We replace 𝑥𝑥 by 𝑥𝑥2 in (2), we get  
𝑑𝑑(𝑥𝑥2)𝐷𝐷(𝑥𝑥2,𝑦𝑦) = 0 
4𝑥𝑥2𝑑𝑑(𝑥𝑥)2𝑥𝑥𝐷𝐷(𝑥𝑥,𝑦𝑦) = 0 
8𝑥𝑥2𝑑𝑑(𝑥𝑥)𝑥𝑥𝐷𝐷(𝑥𝑥,𝑦𝑦) = 0 
 
If 𝑥𝑥 = 0 it is trivial, if 𝑥𝑥 ≠ 0 then 𝑑𝑑(𝑥𝑥)𝑥𝑥𝐷𝐷(𝑥𝑥,𝑦𝑦) = 0, for all 𝑥𝑥,𝑦𝑦 ∈ 𝑅𝑅.                                                                   (3) 
 
By the linearization of (1), we get  
𝐷𝐷(𝑑𝑑(𝑥𝑥 + 𝑦𝑦), 𝑥𝑥 + 𝑦𝑦) = 0 
𝐷𝐷(𝑑𝑑(𝑥𝑥) + 𝑑𝑑(𝑦𝑦) + 2𝐷𝐷(𝑥𝑥,𝑦𝑦), 𝑥𝑥 + 𝑦𝑦) = 0 
𝐷𝐷(𝑑𝑑(𝑥𝑥), 𝑥𝑥) + 𝐷𝐷(𝑑𝑑(𝑥𝑥),𝑦𝑦) + 𝐷𝐷(𝑑𝑑(𝑦𝑦), 𝑥𝑥) + 𝐷𝐷(𝑑𝑑(𝑦𝑦),𝑦𝑦) + 𝐷𝐷(2𝐷𝐷(𝑥𝑥,𝑦𝑦), 𝑥𝑥) + 𝐷𝐷(2𝐷𝐷(𝑥𝑥,𝑦𝑦),𝑦𝑦) = 0 
 
By using (1) in the above equation, we get  
𝐷𝐷(𝑑𝑑(𝑥𝑥),𝑦𝑦) + 𝐷𝐷(𝑑𝑑(𝑦𝑦), 𝑥𝑥) + 𝐷𝐷(2𝐷𝐷(𝑥𝑥,𝑦𝑦), 𝑥𝑥) + 𝐷𝐷(2𝐷𝐷(𝑥𝑥,𝑦𝑦),𝑦𝑦) = 0 
𝐷𝐷(𝑑𝑑(𝑥𝑥),𝑦𝑦) + 𝐷𝐷(𝑑𝑑(𝑦𝑦), 𝑥𝑥) + 2𝐷𝐷(𝐷𝐷(𝑥𝑥, 𝑦𝑦), 𝑥𝑥) + 2𝐷𝐷(𝐷𝐷(𝑥𝑥,𝑦𝑦),𝑦𝑦) = 0, for all 𝑥𝑥,𝑦𝑦 ∈ 𝑅𝑅.                                                     (4) 
 
We replace 𝑥𝑥 by −𝑥𝑥 in (4), we get 
𝐷𝐷(𝑑𝑑(−𝑥𝑥),𝑦𝑦) + 𝐷𝐷(𝑑𝑑(𝑦𝑦),−𝑥𝑥) + 2𝐷𝐷(𝐷𝐷(−𝑥𝑥,𝑦𝑦),−𝑥𝑥) + 2𝐷𝐷(𝐷𝐷(−𝑥𝑥,𝑦𝑦),𝑦𝑦) = 0 
𝐷𝐷(𝑑𝑑(𝑥𝑥),𝑦𝑦) − 𝐷𝐷(𝑑𝑑(𝑦𝑦), 𝑥𝑥) + 2𝐷𝐷(𝐷𝐷(𝑥𝑥,𝑦𝑦), 𝑥𝑥) − 2𝐷𝐷(𝐷𝐷(𝑥𝑥,𝑦𝑦),𝑦𝑦) = 0, for all𝑥𝑥,𝑦𝑦 ∈ 𝑅𝑅.                                                      (5) 
 
By adding (4) and (5), we get  
2𝐷𝐷(𝑑𝑑(𝑥𝑥),𝑦𝑦) + 4𝐷𝐷(𝐷𝐷(𝑥𝑥,𝑦𝑦), 𝑥𝑥) = 0 
𝐷𝐷(𝑑𝑑(𝑥𝑥),𝑦𝑦) + 2𝐷𝐷(𝐷𝐷(𝑥𝑥,𝑦𝑦), 𝑥𝑥) = 0, for all 𝑥𝑥,𝑦𝑦 ∈ 𝑅𝑅.                                                          (6) 
 
We replace 𝑦𝑦 by 𝑥𝑥𝑦𝑦 in (6), we get  
𝐷𝐷(𝑑𝑑(𝑥𝑥), 𝑥𝑥𝑦𝑦) + 2𝐷𝐷(𝐷𝐷(𝑥𝑥, 𝑥𝑥𝑦𝑦), 𝑥𝑥) = 0 
𝑥𝑥𝐷𝐷(𝑑𝑑(𝑥𝑥),𝑦𝑦) + 𝑦𝑦𝐷𝐷(𝑑𝑑(𝑥𝑥), 𝑥𝑥) + 2𝐷𝐷(𝑥𝑥𝐷𝐷(𝑥𝑥,𝑦𝑦) + 𝑦𝑦𝐷𝐷(𝑥𝑥, 𝑥𝑥), 𝑥𝑥) = 0 
𝑥𝑥𝐷𝐷(𝑑𝑑(𝑥𝑥),𝑦𝑦) + 𝑦𝑦𝐷𝐷(𝑑𝑑(𝑥𝑥), 𝑥𝑥) + 2𝐷𝐷(𝑥𝑥𝐷𝐷(𝑥𝑥,𝑦𝑦),𝑥𝑥) + 2𝐷𝐷(𝑦𝑦𝐷𝐷(𝑥𝑥, 𝑥𝑥), 𝑥𝑥) = 0 
𝑥𝑥𝐷𝐷(𝑑𝑑(𝑥𝑥),𝑦𝑦) + 𝑦𝑦𝐷𝐷(𝑑𝑑(𝑥𝑥), 𝑥𝑥) + 2𝑥𝑥𝐷𝐷(𝐷𝐷(𝑥𝑥,𝑦𝑦),𝑥𝑥) + 2𝐷𝐷(𝑥𝑥,𝑦𝑦)𝐷𝐷(𝑥𝑥, 𝑥𝑥) + 2𝑦𝑦𝐷𝐷(𝐷𝐷(𝑥𝑥, 𝑥𝑥), 𝑥𝑥) + 2𝐷𝐷(𝑥𝑥, 𝑥𝑥)𝐷𝐷(𝑦𝑦, 𝑥𝑥) = 0 
𝑥𝑥𝐷𝐷(𝑑𝑑(𝑥𝑥),𝑦𝑦) + 𝑦𝑦𝐷𝐷(𝑑𝑑(𝑥𝑥), 𝑥𝑥) + 2𝑥𝑥𝐷𝐷(𝐷𝐷(𝑥𝑥,𝑦𝑦),𝑥𝑥) + 2𝐷𝐷(𝑥𝑥,𝑦𝑦)𝑑𝑑(𝑥𝑥) + 2𝑦𝑦𝐷𝐷(𝑑𝑑(𝑥𝑥), 𝑥𝑥) + 2𝑑𝑑(𝑥𝑥)𝐷𝐷(𝑦𝑦, 𝑥𝑥) = 0 
 
By using (1) and (6) in the above equation, we get  
2𝐷𝐷(𝑥𝑥,𝑦𝑦)𝑑𝑑(𝑥𝑥) + 2𝑑𝑑(𝑥𝑥)𝐷𝐷(𝑦𝑦, 𝑥𝑥) = 0 
𝐷𝐷(𝑥𝑥,𝑦𝑦)𝑑𝑑(𝑥𝑥) + 𝑑𝑑(𝑥𝑥)𝐷𝐷(𝑥𝑥,𝑦𝑦) = 0, for all 𝑥𝑥,𝑦𝑦 ∈ 𝑅𝑅.                                        (7) 
 
By using (2) in (7), we get  
𝐷𝐷(𝑥𝑥,𝑦𝑦)𝑑𝑑(𝑥𝑥) = 0, for all 𝑥𝑥,𝑦𝑦 ∈ 𝑅𝑅.                           (8) 
 
We replace 𝑦𝑦 by 𝑥𝑥 in (7), we get  
𝐷𝐷(𝑥𝑥, 𝑥𝑥)𝑑𝑑(𝑥𝑥) + 𝑑𝑑(𝑥𝑥)𝐷𝐷(𝑥𝑥, 𝑥𝑥) = 0 
𝑑𝑑(𝑥𝑥)𝑑𝑑(𝑥𝑥) + 𝑑𝑑(𝑥𝑥)𝑑𝑑(𝑥𝑥) = 0 
2𝑑𝑑(𝑥𝑥)𝑑𝑑(𝑥𝑥) = 0 
𝑑𝑑(𝑥𝑥)𝑑𝑑(𝑥𝑥) = 0, for all 𝑥𝑥 ∈ 𝑅𝑅.                                             (9) 
 
We replace 𝑦𝑦 by 𝑦𝑦𝑥𝑥 in (7), we get  
𝐷𝐷(𝑥𝑥,𝑦𝑦𝑥𝑥)𝑑𝑑(𝑥𝑥) + 𝑑𝑑(𝑥𝑥)𝐷𝐷(𝑥𝑥,𝑦𝑦𝑥𝑥) = 0 
𝑦𝑦𝐷𝐷(𝑥𝑥, 𝑥𝑥)𝑑𝑑(𝑥𝑥) + 𝑥𝑥𝐷𝐷(𝑥𝑥,𝑦𝑦)𝑑𝑑(𝑥𝑥) + 𝑑𝑑(𝑥𝑥)𝑦𝑦𝐷𝐷(𝑥𝑥, 𝑥𝑥) + 𝑑𝑑(𝑥𝑥)𝑥𝑥𝐷𝐷(𝑥𝑥,𝑦𝑦) = 0 
𝑦𝑦𝑑𝑑(𝑥𝑥)𝑑𝑑(𝑥𝑥) + 𝑥𝑥𝐷𝐷(𝑥𝑥,𝑦𝑦)𝑑𝑑(𝑥𝑥) + 𝑑𝑑(𝑥𝑥)𝑦𝑦𝑑𝑑(𝑥𝑥) + 𝑑𝑑(𝑥𝑥)𝑥𝑥𝐷𝐷(𝑥𝑥,𝑦𝑦) = 0 
 
By using (3), (8), (9) in above equation, we get  
𝑑𝑑(𝑥𝑥)𝑦𝑦𝑑𝑑(𝑥𝑥) = 0, for all 𝑥𝑥,𝑦𝑦 ∈ 𝑅𝑅.  
 
Which implies that 𝑑𝑑(𝑥𝑥) = 0, for all 𝑥𝑥 ∈ 𝑅𝑅, by semiprimeness of 𝑅𝑅, which means that 𝐷𝐷(𝑥𝑥,𝑦𝑦) = 0, for all 𝑥𝑥,𝑦𝑦 ∈ 𝑅𝑅.  
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Theorem 2: Let 𝑅𝑅 be a 2-torsion and 3-torsion free semiprime ring. Let 𝐷𝐷(. , . ):𝑅𝑅 × 𝑅𝑅 → 𝑅𝑅 and 𝐵𝐵(. , . ):𝑅𝑅 × 𝑅𝑅 → 𝑅𝑅 be 
a symmetric left bi-derivation and symmetric bi-additive mapping respectively. Suppose that 𝑑𝑑�𝑑𝑑(𝑥𝑥)� = 𝑓𝑓(𝑥𝑥) holds for 
all 𝑥𝑥 ∈ 𝑅𝑅, where 𝑑𝑑 be a trace of 𝐷𝐷 and 𝑓𝑓be a trace of 𝐵𝐵. In this case 𝐷𝐷 = 0. 
 
Proof: We have 𝑑𝑑�𝑑𝑑(𝑥𝑥)� = 𝑓𝑓(𝑥𝑥), for all 𝑥𝑥 ∈ 𝑅𝑅.                                               (10) 
 
By the linearization of (10), we get 
𝑑𝑑�𝑑𝑑(𝑥𝑥 + 𝑦𝑦)� = 𝑓𝑓(𝑥𝑥 + 𝑦𝑦) 
𝑑𝑑�𝑑𝑑(𝑥𝑥) + 𝑑𝑑(𝑦𝑦) + 2𝐷𝐷(𝑥𝑥,𝑦𝑦)� = 𝑓𝑓(𝑥𝑥) + 𝑓𝑓(𝑦𝑦) + 2𝐵𝐵(𝑥𝑥,𝑦𝑦) 
𝑑𝑑�𝑑𝑑(𝑥𝑥)� + 𝑑𝑑�𝑑𝑑(𝑦𝑦)� + 𝑑𝑑�2𝐷𝐷(𝑥𝑥,𝑦𝑦)� + 2𝐷𝐷�𝑑𝑑(𝑥𝑥),𝑑𝑑(𝑦𝑦)� + 2𝐷𝐷�𝑑𝑑(𝑥𝑥), 2𝐷𝐷(𝑥𝑥,𝑦𝑦)� + 2𝐷𝐷�𝑑𝑑(𝑦𝑦), 2𝐷𝐷(𝑥𝑥,𝑦𝑦)�

= 𝑓𝑓(𝑥𝑥) + 𝑓𝑓(𝑦𝑦) + 2𝐵𝐵(𝑥𝑥,𝑦𝑦) 
𝑑𝑑�𝑑𝑑(𝑥𝑥)� + 𝑑𝑑�𝑑𝑑(𝑦𝑦)� + 4𝑑𝑑�𝐷𝐷(𝑥𝑥,𝑦𝑦)� + 2𝐷𝐷�𝑑𝑑(𝑥𝑥),𝑑𝑑(𝑦𝑦)� + 4𝐷𝐷�𝑑𝑑(𝑥𝑥),𝐷𝐷(𝑥𝑥,𝑦𝑦)� + 4𝐷𝐷�𝑑𝑑(𝑦𝑦),𝐷𝐷(𝑥𝑥,𝑦𝑦)�

= 𝑓𝑓(𝑥𝑥) + 𝑓𝑓(𝑦𝑦) + 2𝐵𝐵(𝑥𝑥,𝑦𝑦) 
 
By using (10) in the above equation, we get  
4𝑑𝑑�𝐷𝐷(𝑥𝑥,𝑦𝑦)� + 2𝐷𝐷�𝑑𝑑(𝑥𝑥),𝑑𝑑(𝑦𝑦)� + 4𝐷𝐷�𝑑𝑑(𝑥𝑥),𝐷𝐷(𝑥𝑥,𝑦𝑦)� + 4𝐷𝐷�𝑑𝑑(𝑦𝑦),𝐷𝐷(𝑥𝑥,𝑦𝑦)� = 2𝐵𝐵(𝑥𝑥,𝑦𝑦) 
2𝑑𝑑�𝐷𝐷(𝑥𝑥,𝑦𝑦)� + 𝐷𝐷�𝑑𝑑(𝑥𝑥),𝑑𝑑(𝑦𝑦)� + 2𝐷𝐷�𝑑𝑑(𝑥𝑥),𝐷𝐷(𝑥𝑥,𝑦𝑦)� + 2𝐷𝐷�𝑑𝑑(𝑦𝑦),𝐷𝐷(𝑥𝑥,𝑦𝑦)� = 𝐵𝐵(𝑥𝑥,𝑦𝑦), for all 𝑥𝑥,𝑦𝑦 ∈ 𝑅𝑅.                     (11) 
 
We replace 𝑥𝑥 by −𝑥𝑥 in (11), we get  
2𝑑𝑑�𝐷𝐷(−𝑥𝑥,𝑦𝑦)� + 𝐷𝐷�𝑑𝑑(−𝑥𝑥),𝑑𝑑(𝑦𝑦)� + 2𝐷𝐷�𝑑𝑑(−𝑥𝑥),𝐷𝐷(−𝑥𝑥,𝑦𝑦)� + 2𝐷𝐷�𝑑𝑑(𝑦𝑦),𝐷𝐷(−𝑥𝑥,𝑦𝑦)� = 𝐵𝐵(−𝑥𝑥,𝑦𝑦) 
2𝑑𝑑�𝐷𝐷(𝑥𝑥,𝑦𝑦)� + 𝐷𝐷�𝑑𝑑(𝑥𝑥),𝑑𝑑(𝑦𝑦)� − 2𝐷𝐷�𝑑𝑑(𝑥𝑥),𝐷𝐷(𝑥𝑥,𝑦𝑦)� − 2𝐷𝐷�𝑑𝑑(𝑦𝑦),𝐷𝐷(𝑥𝑥,𝑦𝑦)� = −𝐵𝐵(𝑥𝑥,𝑦𝑦), for all 𝑥𝑥,𝑦𝑦 ∈ 𝑅𝑅.                  (12) 
 
Subtract (12) from (11), we get  
4𝐷𝐷�𝑑𝑑(𝑥𝑥),𝐷𝐷(𝑥𝑥,𝑦𝑦)� + 4𝐷𝐷�𝑑𝑑(𝑦𝑦),𝐷𝐷(𝑥𝑥,𝑦𝑦)� = 2𝐵𝐵(𝑥𝑥,𝑦𝑦) 
2𝐷𝐷�𝑑𝑑(𝑥𝑥),𝐷𝐷(𝑥𝑥,𝑦𝑦)� + 2𝐷𝐷�𝑑𝑑(𝑦𝑦),𝐷𝐷(𝑥𝑥,𝑦𝑦)� = 𝐵𝐵(𝑥𝑥,𝑦𝑦),for all 𝑥𝑥,𝑦𝑦 ∈ 𝑅𝑅.                                                         (13) 
 
We replace 𝑥𝑥 by 2𝑥𝑥 in (13), we get 
2𝐷𝐷�𝑑𝑑(2𝑥𝑥),𝐷𝐷(2𝑥𝑥,𝑦𝑦)� + 2𝐷𝐷�𝑑𝑑(𝑦𝑦),𝐷𝐷(2𝑥𝑥,𝑦𝑦)� = 𝐵𝐵(2𝑥𝑥,𝑦𝑦) 
16𝐷𝐷�𝑑𝑑(𝑥𝑥),𝐷𝐷(𝑥𝑥,𝑦𝑦)� + 4𝐷𝐷�𝑑𝑑(𝑦𝑦),𝐷𝐷(𝑥𝑥,𝑦𝑦)� = 2𝐵𝐵(𝑥𝑥,𝑦𝑦) 
8𝐷𝐷�𝑑𝑑(𝑥𝑥),𝐷𝐷(𝑥𝑥,𝑦𝑦)� + 2𝐷𝐷�𝑑𝑑(𝑦𝑦),𝐷𝐷(𝑥𝑥,𝑦𝑦)� = 𝐵𝐵(𝑥𝑥,𝑦𝑦), for all 𝑥𝑥,𝑦𝑦 ∈ 𝑅𝑅.                                                         (14) 
 
Subtract (13) from (14), we get  
6𝐷𝐷�𝑑𝑑(𝑥𝑥),𝐷𝐷(𝑥𝑥,𝑦𝑦)� = 0 
 
Since 𝑅𝑅 is 2-torison and 3-torison free ring, we get 
𝐷𝐷�𝑑𝑑(𝑥𝑥),𝐷𝐷(𝑥𝑥,𝑦𝑦)� = 0, for all 𝑥𝑥,𝑦𝑦 ∈ 𝑅𝑅.                                               (15) 
 
By using (15) and (13), we get 
𝐵𝐵(𝑥𝑥,𝑦𝑦) = 0, for all 𝑥𝑥,𝑦𝑦 ∈ 𝑅𝑅.  
 
We replace 𝑦𝑦 by 𝑥𝑥 in the above equation, we get 𝑓𝑓(𝑥𝑥) = 0, for all 𝑥𝑥 ∈ 𝑅𝑅.                                                                    (16) 
 
By using (1) and (16), we get  
𝑑𝑑�𝑑𝑑(𝑥𝑥)� = 0, for all 𝑥𝑥 ∈ 𝑅𝑅.                                                                                                                                            (17) 
 
We replace 𝑦𝑦 by 𝑦𝑦𝑧𝑧 in (15), we get 
𝐷𝐷�𝑑𝑑(𝑥𝑥),𝐷𝐷(𝑥𝑥,𝑦𝑦𝑧𝑧)� = 0 
𝐷𝐷�𝑑𝑑(𝑥𝑥),𝑦𝑦𝐷𝐷(𝑥𝑥, 𝑧𝑧) + 𝑧𝑧𝐷𝐷(𝑥𝑥,𝑦𝑦)� = 0 
𝐷𝐷�𝑑𝑑(𝑥𝑥),𝑦𝑦𝐷𝐷(𝑥𝑥, 𝑧𝑧)� + 𝐷𝐷�𝑑𝑑(𝑥𝑥), 𝑧𝑧𝐷𝐷(𝑥𝑥,𝑦𝑦)� = 0 
𝑦𝑦𝐷𝐷�𝑑𝑑(𝑥𝑥),𝐷𝐷(𝑥𝑥, 𝑧𝑧)� + 𝐷𝐷(𝑥𝑥, 𝑧𝑧)𝐷𝐷(𝑑𝑑(𝑥𝑥),𝑦𝑦) + 𝑧𝑧𝐷𝐷�𝑑𝑑(𝑥𝑥),𝐷𝐷(𝑥𝑥,𝑦𝑦)� + 𝐷𝐷(𝑥𝑥,𝑦𝑦)𝐷𝐷(𝑑𝑑(𝑥𝑥), 𝑧𝑧) = 0 
 
By using (15) in the above equation, we get 
𝐷𝐷(𝑥𝑥, 𝑧𝑧)𝐷𝐷(𝑑𝑑(𝑥𝑥),𝑦𝑦) + 𝐷𝐷(𝑥𝑥,𝑦𝑦)𝐷𝐷(𝑑𝑑(𝑥𝑥), 𝑧𝑧) = 0, for all 𝑥𝑥,𝑦𝑦, 𝑧𝑧 ∈ 𝑅𝑅.                                                                                  (18) 
 
We replace 𝑧𝑧 by 𝑑𝑑(𝑥𝑥) in (18), we get  
𝐷𝐷�𝑥𝑥,𝑑𝑑(𝑥𝑥)�𝐷𝐷(𝑑𝑑(𝑥𝑥),𝑦𝑦) + 𝐷𝐷(𝑥𝑥,𝑦𝑦)𝐷𝐷�𝑑𝑑(𝑥𝑥),𝑑𝑑(𝑥𝑥)� = 0 
𝐷𝐷�𝑥𝑥,𝑑𝑑(𝑥𝑥)�𝐷𝐷(𝑑𝑑(𝑥𝑥),𝑦𝑦) + 𝐷𝐷(𝑥𝑥,𝑦𝑦)𝑑𝑑�𝑑𝑑(𝑥𝑥)� = 0 
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By using (17) in the above equation, we get   
𝐷𝐷�𝑥𝑥,𝑑𝑑(𝑥𝑥)�𝐷𝐷(𝑑𝑑(𝑥𝑥),𝑦𝑦) = 0, for all 𝑥𝑥,𝑦𝑦 ∈ 𝑅𝑅.                                                                                                                  (19) 
 
We replace 𝑦𝑦 by 𝑥𝑥𝑦𝑦 in (19), we get 
𝐷𝐷�𝑥𝑥,𝑑𝑑(𝑥𝑥)�𝐷𝐷(𝑑𝑑(𝑥𝑥), 𝑥𝑥𝑦𝑦) = 0 
𝐷𝐷(𝑑𝑑(𝑥𝑥), 𝑥𝑥)�𝑥𝑥𝐷𝐷(𝑑𝑑(𝑥𝑥),𝑦𝑦) + 𝑦𝑦𝐷𝐷(𝑑𝑑(𝑥𝑥), 𝑥𝑥)� = 0 
𝐷𝐷(𝑑𝑑(𝑥𝑥), 𝑥𝑥)𝑥𝑥𝐷𝐷(𝑑𝑑(𝑥𝑥),𝑦𝑦) + 𝐷𝐷(𝑑𝑑(𝑥𝑥), 𝑥𝑥)𝑦𝑦𝐷𝐷(𝑑𝑑(𝑥𝑥), 𝑥𝑥) = 0 
 
We replace 𝑦𝑦 by 𝑥𝑥 in the above equation we get 𝐷𝐷(𝑑𝑑(𝑥𝑥), 𝑥𝑥)𝑥𝑥𝐷𝐷(𝑑𝑑(𝑥𝑥), 𝑥𝑥) = 0, which implies 𝐷𝐷(𝑑𝑑(𝑥𝑥), 𝑥𝑥) = 0 for all 
𝑥𝑥 ∈ 𝑅𝑅 since we have assumed that 𝑅𝑅 is semiprime. Now Theorem 1 completes the proof. 
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