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ABSTRACT 
In this paper, we will discuss certain limitations of codes in the form of upper and lower bounds on the rate of codes as 
a function of their relative distance. Further we will give concrete bounds on the size of codes and then infer as 
corollaries the asymptotic statement for code families relating rate and relative distance.  
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1. INTRODUCTION  
 
Coding theory is an important study which attempts to minimize data loss due to errors introduced in transmission from 
noise, interference or other forces. with a wide range of theoretical and practical applications from digital data 
transmission to modern medical research, coding theory has helped enable much of growth in the 20th century. It is 
particularly important to ensure reliable transmission when large computer files are rapidly transmitted or when data 
are sent over long distances, such as data transmitted from space probes billions of miles away. To guarantee reliable 
transmission or recover degraded data, techniques from coding theory are used. Messages, in the form of bit strings, are 
encoded by translating them into longer bit strings, called codeword. A set of codeword is called a code. We can detect 
errors when we use certain codes, as long as not too many errors have been made, we can determine whether one or 
more errors have been introduced when a bit string was transmitted. Furthermore, when codes with more redundancy 
are used, we can correct errors.                                       
 
A rough gauge of the quality of a linear code C  is provided by two invariants, the transmission rate ( ) nkCR =:  

and the relative distance ( ) ndC =:δ , where n  is the length of C , k  is its dimension and d  its  minimum 
distance. In essence, the purpose of coding theory is to find codes that optimize these invariants. In this paper, we will 
discuss certain elementary upper and lower bounds on the rate of codes as a function of their relative distance. 
 
2. PRE-REQUISITES 
 
Definition 2.1:  A code is any non-empty subset of .n

qF  The code is called linear if it is an qF -linear subspace of 

.n
qF   The number n  is the length of the code. 

 
Definition 2.2: The Hamming distance d  on n

q
n

q FF ×  is given by ( ) { }ii yxniiyxd ≠≤≤= ,1/:, ,   

Where  ( )nxxx ,...,1=  and ( )nyyy ,...,1= .  

The weight of x  is defined by ( ) ( )0,: xdxw = , where ( )0,...,0:0 = . 
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Remark 2.3: The Function d  is metric on n

q
n

q FF × . 
 
Definition 2.4: The minimum distance of a code n

qFC ⊆  is given by   

( ) ( ){ }yxCyxyxdCd ≠∈= ,,:,min:  
 
Remark 2.5:  For n

qFC ⊆  a linear code, we have ( ) ( ) { }{ }0\:min CxxwCd ∈= . 
 
Definition 2.6: If qF =  and nFC ⊂ , then CnR qlog: 1−=   is called the (information) rate of C . 
 
For a linear [ ]kn, -code we can write ( ) nkCR /= . 
 
Definition 2.7: For a code C  with length n  and minimum distance d , let  nd /=δ   be the relative distance of the 

code. The relative distance is often defined as  nd /  ; however taking 
n

d 1−
 makes some of the calculations simpler. 

 
Definition 2.8: Let n

qFC ⊆  be a linear code of dimension k . A generator matrix of C  is a nk ×  matrix whose 

rows form an qF -base of C . 
 
Definition 2.9: Let n

qFC ⊆  be a code. The dual code of C  is the code ⊥C defined by  

{ }CyyxFxC n
q ∈∀=∈=⊥ ,0,:: ,  

where for ( )nxxx ,...,1= ,  ( )nyyy ,...,1= ,  i

n

i
i yxyx ∑

=

=
1

:,  is the usual bilinear form on n
q

n
q FF × .   

Note that, ⊥C is indeed a linear code. 
 
Definition 2.10: A parity check matrix of a linear code is any generator matrix of its dual. 
 
Definition 2.11: Let A  be an alphabet of size 1>q and fix .,dn  we define   

( ) ( ){ }.,,/max, codeexistsdMnanMdnAq ∃= .  

An ],,[ dMn -code for which ( )dnAM q ,=  is called an optimal code. 
 
Definition 2.12:  Let 1>q  be a prime power and fix .,dn   

We define ( ) ( ){ }.,,/max, codedMnalinearqdnB k
q ∃= .  

A linear ],,[ dMn  -code for which ( )dnBq q
k ,=   is called an linear optimal code. 

 

Definition 2.13: The binary entropy function H  is defined by ( ) ( )
x

x
x

xxH
−

−+=
1

1log11log 22 . 

 
3. SOME BOUNDS ON CODES 
 
3.1. The Sphere –Covering Lower Bound 
 
Definition 3.1.1: Let A  be an alphabet of size q  with .1>q  Then for every nAu∈  and every Nr ∈ ( )0≥r , a 

sphere with centre u  and radius r , denoted ( )ruS A , , is defined to be the set ( ){ }rvudAv n ≤∈ ,/ . 
 
The volume of a sphere as above denoted ( )rV n

q , is defined to be ( )ruS A , . 
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Lemma 3.1.2: For every natural number 0≥r  and alphabet A  of size  ,1>q  and for every nAu∈ we have, 

( ) ( )







>

≤≤−







= ∑

=

nrq

nrq
i
n

rV
n

r

i

i
n

q
01

0  

 
Theorem 3.1.3: (Sphere-covering bound) For every natural number ,1>q and every Ndn ∈, such that nd ≤≤1   

it holds that ( ) ( )1
,

−
≥

dV
qdnA n

q

n

q . 

 
Proof: Let { }MccC ,...,1=  be an optimal ],,[ dMn -code over an alphabet of size q . That is, ( )dnAM q ,= . 

Since C  is optimal, there does not exist any word in nA  of distance at least d  from every Cci ∈ . Thus, for every 
nAx∈  there exists at least one Cci ∈  such that ( )1, −∈ dcSx iA .               

     

This   implies that, ( )1,
1

−⊆
=

dcSA iA

M

i

n
   and so,  ( ) ( )1.1,

1
−=−≤ ∑

=

dVMdcSq n
q

M

i
iA

n
. 

 
Since  C  is optimal, we have ( )dnAM q ,=  and hence   ( ) ( )1., −≤ dVdnAq n

qq
n , implies that 

( ) ( )1
,

−
≥

dV
qdnA n

q

n

q  . 

  
3.2. The Hamming (Sphere Packing) Upper Bound 

The idea behind the upper bound is that, if we place spheres of radius 



 −

2
1d

 around every codeword, then the 

spheres must be disjoint ( otherwise there exists a word that is at distance at most 



 −

2
1d

 from two code words and by 

the triangle inequality there are two code words at distance at most  1−d  from each other) . The bound is thus derived 
by computing how many disjoint spheres of this size can be “packed” into the space. 
 
Theorem 3.2.1: (sphere-packing bound): For every natural number 1>q  and Ndn ∈,  such that nd ≤≤1 ;       

( )












 −

≤

2
1

,
dV

qdnA
n

q

n

q  

 

Proof: Let { }MccC ,...,1=  be an optimal code with qA = , and  let 



 −

=
2

1de . Since dCd =)(  the spheres 

( )ecS iA ,  are all disjoint. Therefore ( ) n
iA

M

i
AecS ⊆

=
,

1
 , where the union is a disjoint one. Therefore, 

nn
q qdVM ≤












 −

⋅
2

1
 . 

Using now the fact that ( )dnAM q ,=   we conclude that, ( )












 −

≤

2
1

,
dV

qdnA
n

q

n

q . 
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Corollary 3.2.2: For every natural number 1>q  and  Ndn ∈, such that nd ≤≤1   it holds that, 

( ) ( )












 −

≤≤
−

2
1

,
1 dV

qdnA
dV
q

n
q

n

qn
q

n

 

 
Note that there is huge gap between these two bounds. 
 
Definition 3.2.3: A code C  over an alphabet of size q  with parameters ],,[ dMn  is called a perfect code, if   













 −

=

2
1dV

qM
n

q

n

 

 
Remark 3.2.4: Every perfect code is an optimal code, but not necessarily the other way around. 
 
Proposition 3.2.5: If there exist a perfect code  n

qFC ⊆   with ( ) dCd =   then  ( )dnAC q ,= . 

Hamming bound is a little odd, since for every pair of values d , 1+d  where d  is odd, the bound does not decrease. 

This stems from the fact that, for odd d ,  



=



 −

22
1 dd

. This behavior is not incidental (for binary codes) and a 

binary code with odd distance can always be extended so that the distance is increased by 1.This does not help with 
error correction, but does help with error detection. 
 
Theorem 3.2.6: Let d  be odd. Then there exists a binary ],,[ dMn -code if and only if, there exists a binary 
( )1,,1 ++ dkn -code. Likewise there exists a binary linear ],,[ dkn -code if and only if, there exists a binary linear 

]1,,1[ ++ dkn -code. 
 
3.3. The Singleton Bound and MDS Codes  
The parity check matrix H of an ( )dkn ,,  linear code is an n  by kn −  matrix such that, every 1−d  rows of H
are independent. Since the rows have length kn − , we can never have more than kn −  independent row vectors. 
Hence knd −≤−1  or equivalently 1+−≤ dnk . This establishes the result which is known as the Singleton 
bound. 
 
Theorem 3.3.1: (Singleton bound) For every natural number 1>q  and Ndn ∈,  with  nd ≤≤1  it holds that

( ) 1, +−≤ dn
q qdnA . In particular, if C  is a linear ],,[ dkn -code, then  1+−≤ dnk  

 
Proof: Let C  be an optimal ( )dMn ,, -code and so ( )dnAM q ,= . If we erase the last 1−d  coordinates from all 

words in C , we still remain with the same number of words. Now, since we are left with 1+− dn  coordinates there 

are at most 1+−dnq  different words, implying that ( ) 1, +−≤= dn
q qMdnA . 

 
Definition 3.3.2: A linear code with parameters ],,[ dkn  such that 1+−= dnk   is called a maximum distance 
separable ( )MDS  code.  
 
Proposition 3.3.3: The dual code of an MDS  code is MDS . 
The singleton bound is only of interest for large values of q . In particular, the singleton bound tells us that 

1+−≤ dnk  and thus for 3=d  it holds that 2−≤ nk .  However, by the Hamming bound, we know that for 
2=q  it really holds that nnk log−≤  and thus the bound given by Singleton is very weak. 
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Theorem 3.3.4: (Properties of MDS  codes)   
Let C  be a linear code over qF  with parameters ],,[ dkn . Let G  and H  be generator and parity-check matrices for 

C . The following claims are equivalent: 
1. C  is an MDS  code. 
2. Every subset of kn −  columns in H is linearly independent. 
3. Every subset of k  columns in G  is linearly independent. 
4. ⊥C  is an MDS  code. 

 
3.4. The Gilbert -Varshamov Bound  
The Gilbert-Varshamov bound is a lower bound for ( )dnBq ,  
 
Theorem 3.4.1:  Let n , k  and d  be natural numbers such that nd ≤≤2  and nk ≤≤1 .  
If  ( ) knn

q qdV −− <− 21   then there exists a linear code ( )kn,  over qF  with distance at least d . 
 
Proof:  If  ( ) knn

q qdV −− <− 21  then there exists a parity check matrix ( ) nkn
qFH ×−∈  for which every 1−d  

columns are linearly independent.  
 
Corollary 3.4.2: Let 1>q  be a prime power, and let Ndn ∈,  such that nd ≤≤2 .   

Then ( ) ( )2
, 1

1

−
≥ −

−

dV
qdnB n

q

n

q . 

 
Proof:  Define  ( ) ]12[log 1 +−−= − dVnk n

qq . It follows that,  

( ) ( ) ( )212 11)]12([log 1

−>+−≥= −−+−−
−

dVdVqq n
q

n
q

dVkn n
qq  

 
Therefore, by the Theorem 3.4.1 there exists a linear ],,[ dkn ′ -code with dd ≥′ . It follows that, 

( ) k
q qdnB ≥, .  The bound is obtained as  

( )( ) ( )( )
( ) ( )212 1

1

1

1
12log1]12[log 11

−
≥

+−
=≥= −

−

−

−
+−−−+−− −−

dV
q

dV
qqqq n

q

n

n
q

n
dVndVnk n

qq
n

qq . 

 
The Gilbert-Varshamov bound asserts the existence of positive rate binary codes only for relative distance 2/1<δ . 
The Hamming bound on the other hand does not rule out positive rate binary codes even for 2/1>δ , in fact not even 
for any .1<δ  Thus, there is a qualitative gap between these bounds in terms of identifying the largest possible 
distance for asymptotically good binary codes. 
 
3.5. The Plotkin Bound  
 
We now present a bound that is much better than the Singleton and Hamming bounds. However it is only relevant for 
limited parameters. This bound uses the Cauchy-Schwarz inequality. This inequality states that, Let   

( )naaaa ,...,, 21=   and ( )nbbbb ,...,, 21=   be sequences of real or complex numbers. Then  
2

1

2

1

2

1
∑∑∑
===

≤
n

i
i

n

i
i

n

i
ii baba . 

 
Theorem 3.5.1: Let C  be a aryq −  code of length n  and minimum distance d . Then if  nd ρ> ,  

( )
nd

ddnAq ρ−
≤,   ,    where ( ) qq /1−=ρ  
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Proof: Consider a code C  with M  codewords in it. Form a list with the M  codewords as the rows, and consider a 

column in this list. Let jq  denote the number of times that the thj symbol in the code alphabet, qj <≤0 , appears in 

this column. Clearly Mq
q

j
j =∑

−

=

1

0
. 

 

Let the rows of the table be arranged so that the 0q codewords with the th0 symbol are listed first and call that set of 

codewords 0R , the 1q  codewords with the st1 symbol are listed second and call that set of codewords 1R , and so 

forth. Consider the Hamming distance between all ( )1−MM  pairs of codewords, as perceived by this selected 

column. For pairs of codewords within a single set iR , all the symbols are same, so there is no contribution to the 
Hamming distance. For pairs of codewords drawn from different sets, there is a contribution of 1 to the Hamming 
distance. Thus, for each of the jq codewords drawn from set jR , there is a total contribution of jqM −  to the 

Hamming distance between the codewords in jR  and all the other sets. Summing these up, the contribution of this 
column to the sum of the distances between all pairs of codewords is    

( ) ∑∑∑∑
−

=

−

=

−

=

−

=

−=−=−
1

0

22
1

0

2
1

0

1

0

q

j
j

q

j
j

q

j
j

q

j
jj qMqqMqMq  

 
Now using the Cauchy-Schwartz inequality, we write 

( ) 







−=








−≤− ∑∑

−

=

−

= q
Mq

q
MqMq

q

j
jj

q

j
j

111 2

21

0

2
1

0
 

 
Now total this result over all n columns. There are ( )1−MM  pairs of codewords, each a distance at least d  apart.  

We obtain, ( ) 22111 MnM
q

ndMM ρ=







−≤− .  

⇒
ρnd

dM
−

≤  

 
Since this result holds for any code, since the C  was arbitrary, it must hold for the code with ( )dnAq ,

 
codewords.  

Equivalently,  
1−

≤
M

Mnd ρ
. 

 
The Plotkin bound provides an upper bound on the distance of a code with given length n  and size M . 
 
In order to compare this bound to the Singleton bound, consider the case of 2=q  and thus 2/1=ρ . 

Then, for 2/nd >   we obtain ( ) 





−
≤

2/
,

nd
ddnAq . Now, if 12/ += nd   then this bound gives us that 

( ) 1
2

, +=≤
nddnAq .   The Singleton bound just tells us that 2/nk ≤  and so  ( ) 2/2, n

q dnA ≤ . 

 
Thus, the Plotkin bound is exponentially better than Singleton. 
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Figure-1:  Bounds for binary codes 

 
4. ASYMPTOTIC BOUNDS ON CODES   
 
In this section, we will discuss asymptotic bounds, specifically bounds on codes when ∞→n  

Recall that the rate of a code is defined to be  ( )
n

M
CR qlog

=  and the relative distance is ( )
n

dC 1−
=δ . 

 
4.1. The Asymptotic Singleton Bound  
 
Proposition 4.1.1: Let ( )C

n
δδ

∞→
= lim  and let ( )CRR

n ∞→
= lim . Then, for every code C  it holds that R−≤ 1δ . 

 
Proof: The singleton bound states that, for every ( )dMn ,, -code,  1log +−≤ Mnd q   and equivalently, 

Mnd qlog1 −≤− . Thus,  ( ) ( ) RCR
n

M
n
n

n
dC q −→−=−≤
−

= 11
log1δ . 

 
Note that in this case, there is actually no difference between the regular and asymptotic Singleton bounds. 
 
4.2. The Asymptotic Sphere-Packing Bound 
 
Notations 4.2.1: Let { }nCC =  be a family of codes, such that nC  is the concrete code of length n  in the family.  
Then, ( ) ( )nn

CC δδδ
∞→

== lim   and  ( ) ( )nn
CRCRR

∞→
== lim . 

 

The bounds which hold for every n  can be written as the bound for nC , and some hold only for ∞→n  is the bound 

for C . 
 

Theorem 4.2.2: For every binary code C  with asymptotic relative distance  
2
1

≤δ   and rate R ,  

( )2/1 δHR −≤  
 

Proof: Since  
n

M
R qlog
=    and so, MRn 2log=⋅ .  

The sphere-packing bound states that,  ( )












 −

≤≤

2
1

,
dV

qdnAM
n

q

n

q  
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And so, ( )dnAMRn ,loglog 2≤=  

             nR  























 −

≤

2
1

2log
2

dV n

n

 

                    = 











 −

−
2

1log 2
dVn n  

                    = 








− 22log
δnH

n  

                    = 





−

2
δnHn    

 

On dividing by n , we obtain  





−≤

2
1 δHR . 

 
4.3. The Asymptotic Gilbert-Varshamov Bound 
 

Theorem 4.3.1: Let ,n k  and d  be such that ( )δHR −≤ 1  where  
n
kR =  and  

2
11

≤
−

=
n

dδ . Then, there exists 

a binary linear code nC with rate R  and distance at least d . 
 
Proof: If ( )δHR −≤ 1   then ( )δnHnnR −≤   and ( )δnHnRn ≥− . Since knR =  we have that 

( )δnHkn ≥− . This implies that,  ( ) ( ) ( ) ( )2122 222 −>−=≥≥− dVdVnV nnnnHkn δδ  

Thus, by the Gilbert-Varshamov bound, there exists a binary linear code with distance at least d . 
 
Corollary 4.3.2: For every n , there exists a binary linear code nC  with asymptotic relative distance and rate that are 
constant and non-zero. 
 
Proof: Take any δ  that is strictly between 0  and 5.0 . For example, take 4/1=δ .  
Then ( ) 81.075.0log75.025.0log25.0 ≈−−=δH . This implies that there exists a code with relative distance 

25.0  and rate 18.0 . 
 
Observe that as 2/1→δ , ( ) 1→δH  and so ;0→R  Conversely, as 0→δ  we have that 1→R . The above 
theorem tells us that we can choose anything we like in between these extremes. 
 
4.4. The Asymptotic Plotkin Bound  
 
Definition 4.4.1: Let q  be a prime power and R∈δ , with 10 ≤≤ δ   Then 

( ) ( )nnA
n

Sup qqnq δδα ,log1lim:
∞→

=  

( )δα q  is the largest R ,such that there is a sequence of codes over qF  with relative minimum distance  converging to 

δ  and information rate converging to R . 
 
Theorem 4.4.2: (Asymptotic Plotkin bound)   with q/11−=ρ   we have  

( )
( )

1 / , 0
0, 1

q

q

if
if

α δ δ ρ δ ρ
α δ ρ δ

≤ − ≤ ≤
 = ≤ ≤
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Proof: Let C  be a ( )dMn ,, -code over qF . We can shorten C  by considering the subset of C , r -times. Let C ′  

be a code with length rn − , minimum distance ,d and at least rqM / -codewords. 

Set 






 −
=′

ρ
1: dn  and shorten C , a total of nnr ′−=  times to obtain a code of length n′  with nnqMM ′−≥′ /

codewords. 
 

The original Plotkin Bound theorem gives us,  d
nd

dM
q
M

nn ≤
′−

≤′≤′− ρ
,  which immediately gives us  

nndqM ′−≤ .   
 
Therefore we have   

( ) ( )nn
qnq nq

n
Sup ′−

∞→
≤ δδα log1lim  

             = 







′

−++
∞→ n

n
n

n
n

Sup qq

n
1

loglog
lim

δ
 

⇒ ( ) ρδδα /1−=q  .       

Since, ρ
δ

ρ
=







 −
=

′
∞→∞→

nd
n
n

nn

1limlim . 

 
5. CONCLUSION 
 
In this article, we summarize some elementary bounds on codes. By using some simple ideas, we have   achieved fairly 
tight upper and lower bounds on the rate achievable for any value of δ . 
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