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ABSTRACT 
A set D of vertices of a graph G is a total efficient dominating set if every vertex in V is adjacent to exactly one vertex 
in D. The total efficient domination number γte(G) of G is the minimum cardinality of a total efficient dominating set of 
G. In this paper, the exact values of γte(G) for some standard graphs are found and some bounds are obtained. Also a 
Nordhaus-Gaddum type result is established. In addition, the total efficient domatic number dte(G) of G is defined to be 
maximum order of a partition of the vertex set of G into total efficient dominating sets of G. Also a relation between 
γte(G) and dte(G) is established. 
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1. INTRODUCTION 
 
By a graph, we mean a finite, undirected without loops, multiple edges and isolated vertices. Terms not defined here 
may be found in Kulli [1]. 
 
A set D of vertices in a graph G=(V, E) is called a dominating set if every vertex in V – D is adjacent to some vertex in 
D. The domination number γ(G) of G is the minimum cardinality of a dominating set of G. Recently many new 
domination parameters are given in the book by Kulli [2, 3, 4].  
 
A dominating set D of G is an efficient dominating set if every vertex in V – D is adjacent to exactly one vertex in D. 
The efficient domination number γe(G) of G is the minimum cardinality of an efficient dominating set of G. This 
concept was studied, for example, in [5, 6, 7]. Many other domination parameters in domination theory were studied, 
for example, in [8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27]. 
 
A set D of vertices in a graph G is a total dominating set if every vertex in V is adjacent to some vertex in D. The total 
domination number γt(G) of G is the minimum cardinality of a total dominating set of G. 
 
In [28], Kulli and Patwari introduced the concept total efficient domination as follows: 
 
A set D of vertices in a graph G is a total efficient dominating set of G if every vertex in V is adjacent to exactly one 
vertex in D. The total efficient domination number γte(G) of G is the minimum cardinality of a total efficient 
dominating set of G.  
 
A γte-set is a minimum total efficient dominating set. Let ∆(G) (δ(G)) denote the maximum (minimum) degree among 
the vertices of G. Let x    denote the least integer greater than or equal to x. 
 
We note that γt(G) and γte(G) are only defined for G with δ(G) ≥ 1. 
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2. TOTAL EFFICIENT DOMINATION NUMBER 
 
We list the exact values of the total efficient domination number for some standard graphs. 
 
Proposition 1: If Pp is a path with p vertices, then 

( ) ,
2te p
pPγ  =   

 when p = 0 (mod 4) and p = 3 (mod 4). 

 
Proposition 2: If Cp is a cycle with p vertices, then 

( ) ,
2te p
pCγ =  when p = 0 (mod 4). 

 
Proposition 3: If Km, n is a complete bipartite graph, 1≤ m≤ n, then 

( ), 2.te m nKγ =  
 
Remark 4: Every graph G without isolated vertices does not contain a total efficient dominating set. It implies that 
γte(G) does not exist. For example, if u, v, w are three cutvertices of a tree T such that deg u≥3, deg v ≥ 3, deg w ≥ 3 and 
uv and vw are edges of T, then γte(T) does not exist. 
 
Proposition 5: If Kp is a complete graph with p≥3 vertices, then γte(Kp) does not exist. 
 
Proposition 6: If γte(G) exists, then 

γt(G) ≤ γte(G)                                                               (1) 
and this bound is sharp. 
 
Proof: Clearly every total efficient dominating set is a total dominating set. Thus (1) holds. 
 
The complete bipartite graphs Km,n, 1≤ m ≤ n achieve this bound. 
 
Proposition 7:  If γte(G) exists, then 

γe(G) ≤ γte(G)                                                               (2) 
and this bound is sharp. 
 
Proof: Clearly every efficient total dominating set is an efficient dominating set. Thus (2) holds. 
 
The complete bipartite graphs Km,n, 2≤ m ≤ n achieve this bound. 
 
The following theorem gives an upper bound for γte(G). 
 
Theorem 8: For any graph G without isolated vertices, 

γte(G) ≤ p – ∆(G) + 1 
and this bound is sharp. 
 
Proof: Let D be a γte-set of G. 
 
Suppose u ∈ V – D. Then degG u is at most |V – D| as it is adjacent to a vertex in D and may be adjacent to every vertex 
of V – D other than itself. Hence the maximum degree of a vertex in V – D is |V – D|. Thus |V – D| = p –  γte(G). 
 
Suppose u ∈ D. Then degG u is at most |V – D|+1. 
 
Thus  ∆(G) ≤ |V – D| +1. 
   ≤ p – γte(G) + 1 
 
or  γte(G) ≤ p – ∆(G) + 1. 
 
The graphs mK2, m≥1 achieve this bound. 
 
The following theorem gives a lower bound for γte(G). 
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Theorem 9: Let G be a (p, q) connected graph with p ≥ 2 vertices. Then 

2(p – q) ≤ γte(G). 
Furthermore, equality holds if and only if G is a tree with exactly one cutvertex or exactly two cutvertices. 
 
Proof: Let D be a γte-set of G. Then for each vertex u ∈ V – D, there exists a vertex v in D such that uv ∈ E. Also for 
each vertex x ∈D, there exists unique vertex y ∈ D such that xy ∈ E. Thus 

2
D

q V D≥ + −  

or  2 2q D V D≥ + −  
or  2q ≥ γte(G) + 2p – 2γte(G) 
or  2(q – p) ≤ γte(G). 
 
We prove the second part. 
 
Suppose G is a tree with exactly one cutvertex or two cutvertices. Then γte(G) = 2 = 2(p – q), since p – q = 1. 
 
Conversely suppose γte(G) = 2(p – q). We now prove that G is a tree with at most two cutvertices. Clearly for any graph 
without isolated vertices, γte(G) ≥ 2. 
 
Suppose p < q. Then 2(p – q) is negative, which is a contradiction. 
 
Suppose p = q. Then 2(p – q) is zero, which is a contradiction. 
 
Suppose p > q. Since G is connected, it implies that G is a tree. If G is a tree with exactly 3 vertices, then by Remark 4, 
γte(G) does not exist. If G is a tree with at least 4 cutvertices, then γte(G) ≥ 4 ≠ 2(p – q), since p – q=1. Thus we onclude 
that G is a tree with at most two cutvertices. 
 
Next we characterize graphs for which γte(G) = p. 
 
Theorem 10: Let G be graph without isolated vertices and with p ≥ 2 vertices. Then γte(G) = p if and if G=mK2, m≥1.  
 
Proof: Suppose G=mK2, m≥1. Obviously γte(G) = p. 
 
Conversely suppose γte(G) = p. We now prove that G=mK2, m≥1. Assume G≠mK2. Then degG u ≥ 2. Let D be a γte-set 
of G. Since γte(G) = p, it implies that |V – D| = φ. Hence u∈D. Since degG u ≥ 2, it implies that u is adjacent with at least 
two vertices in D, which is a contradiction. Suppose degG u < 1. Then u is an isolated vertex, again a contradiction. 
Thus degG u = 1. Since u is arbitrary, it follows that G=mK2, m≥1. 
 
The following theorem gives a lower bound for γte(T).  
 
Theorem 11: Let T be a tree with p ≥ 3 vertices, If γte(T) exists, then 

( ) 1
2te
mTγ  ≤ +  

 

where m is the number of cutvertex of T. 
 

Proof: Let T be a tree with p≥3 vertices. Suppose  γte(T) exists. We now prove that ( ) 1.
2te
mTγ  ≤ +  

 On the contrary, 

assume ( ) 1.
2te
mTγ  > +  

 Then there exist 3 cutvertices u, v, w in D such that uv, vw are edges of T where D is a γte-set 

of T. By Remark 4, γte(T) does not exist, which is a contradiction. This prove that ( ) 1.
2te
mTγ  ≤ +  

 

 
We obtain a relation between the total efficient domination number γte(G) and the chromatic number χ(G). Relations 
between some parameters and the chromatic number established in [29]. 
 
We need the following result.  
 
Theorem 12[2, p.8]: For any graph G, χ(G) ≤ ∆(G)+1. 
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Theorem 13: For any graph G without isolated vertices, 

γte(G) + χ(G) ≤ p + 2                                   (3) 
and this bound is sharp. 
 
Proof: By Theorem 8, γte(G) ≤ p – ∆(G) + 1 and by Theorem 12, χ(G) ≤ ∆(G)+1. Thus (3) holds. 
 
The graphs mK2, m≥ 1 achieve this bound. 
 
Nordhaus-Gaddum type results were obtained for many parameters, for example, in [30, 31, 32, 33, 34, 35, 36]. 
 
We now establish Nordhaus-Gaddum type result. 
 
Theorem 14: Let G and G  have no isolated vertices. If both γte(G) and ( )te Gγ  exist, then 

( ) ( )4 3.te teG G pγ γ≤ + ≤ +  

 
Proof: Let G and G  have no isolated vertices. If both γte(G) and ( )te Gγ  exist, then γte(G) ≥ 2 and ( ) 2.te Gγ ≥  

Therefore 
( ) ( )4 .te teG Gγ γ≤ +  

 
By Theorem 8, we have 

( ) ( ) 1.te G p Gγ ≤ − ∆ +  
 
Therefore ( ) ( ) 1.te G p Gγ δ≤ − +   
 
Also we have 
  ( ) ( ) 1.te G p Gγ ≤ − ∆ +  

 

Thus  ( ) ( ) ( ) ( )2 2te teG G p G Gγ γ δ + ≤ − + ∆ +   

                           ≤ p – (p – 1) + 2 
                                                        ≤ p + 3. 
 
The graph P4 achieves the lower bound. 
     
3. TOTAL EFFICIENT DOMATIC NUMBER 
 
Definition 15: Toe total efficient domatic number dte(G) of  a graph G is the maximum order of a partition of the vertex 
set of G into total efficient dominating sets of G. 
 
We obtain the exact values of the total efficient domatic number dte(G) for some standard graphs. 
 
Proposition 16: For any cycle C4n, n≥1, 

dte(C4n) = 2. 
 
Proposition 17: For any complete bipartite graph Km, n, 1≤m≤n, 

dte(Km, n) = m. 
 
Proposition 18: For any tree T with p≥2 vertices, 

dte(T) = 1. 
 
Proposition 19: Let G be a graph without isolated vertices. If γte(G) exists, then 

( ) ( )
.te

te

pd G
Gγ

≤  

 
Proposition 20: Let G be a graph without isolated vertices. If dte(G) exists, then 

( ) ( ).ted G Gδ≤  
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Proposition 21: If G is a graph without isolated vertices and if γte(G) exists, then 

( ) ( ) 1.te teG d G pγ + ≤ +  
Furthermore, equality holds if G=mK2, m≥1. 
 
Proof: By Theorem 6, we have 
  ( ) ( ) 1te G p Gγ ≤ − ∆ +  

or  ( ) ( ) 1.te G p Gγ δ≤ − +  
 
By Proposition 20, we have ( ) ( ).te G Gγ δ≤  
 
Hence  ( ) ( ) 1.te teG d G pγ + ≤ +  
 
We prove the second part. 
 
If G=mK2, m≥1 then by Theorem 10, γte(G) = p. Also dte(G)=1. Thus γte(G)+dte(G)=p+1.  

 
 
4. SOME OPEN PROBLEMS 
 
Problem 1: Characterize graphs G for which γt(G) = γte(G). 
 
Problem 2: Characterize graphs G for which γe(G) = γte(G). 
 
Problem 3: Characterize graphs G for which γt(G) = p – ∆(G) + 1. 
 

Problem 4: Characterize trees T for which ( ) 1
2te
mTγ  = +  

 where m is the number of cutvertices of T. 

 
Problem 1: Characterize graphs G for which γte(G) + dte(G) = p + 1. 
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