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ABSTRACT 
In this paper we introduce the concept of Vict graph Vn (G) of a graph. Also we determine the number of vertices and 
edges of Vn (G). Further we characterize the graphs whose Vict graphs are planar, outerplanar, maximal outerplanar 
and minimally nonouterplanar. Finally we develop a necessary and sufficient condition for the Vict graph whose 
crossing number is one.    
 
 
1. INTRODUCATION 
 
We shall restrict ourselves to finite, undirected without isolated vertices, loops or multiple edges. For all definitions and 
notations see [2] and [4].                                                                      
 
The line graph of a graph G is the graph whose vertex set corresponds to the edges of G such that two vertices of L(G) 
are adjacent  if  the  corresponding edges of G are adjacent. This concept was first studied by Whitney [3] and was 
studied in [8, 12, 13, 14, 15, 18, 19]. Many other graph valued functions in graph Theory were studied, for example    
[1, 5, 6, 7, 9, 10, 11, 16, 17].        
 
The following will be useful in the proof of our results. 
 
Theorem A [2]: If G is any planar (p, q) graph with p ≥ 3, then q ≤3p-6.Furthermore, if G has no triangles then q≤2p-4. 
 
Theorem B [2]: Every maximal outerplanar graph G with p≥3 vertices has 2p-3 edges. 
 
Theorem C [7]: A connected graph with p≥2 vertices is non empty path if and only if ∑di2 = 4p-6. 
 
Theorem D [2]: The graph K5 and K3,3  are nonplanar. 
 
2. VICT GRAPH  
 
We now define the Vict graph Vn (G) of a graph G as the graph whose vertex set is the union of the set of vertices and 
set of cutvertices of G in which two vertices are adjacent if and only if corresponding vertices of G are adjacent or 
corresponding members of G are adjacent or incident.  
 
In the Figure1, a graph G and its Vict graph Vn (G) are shown. In Vn (G), the light vertices are corresponding to the 
vertices of   G and the dark vertices corresponding to the cutvertices of G. 
 
A graph G is a subgraph of Vn (G). 
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Remark 1: For any non trivial connected graph G, G = Vn (G) if and only if G is a block. 
 
Remark 2: If the degree of a cutvertex in G is n, then the degree of corresponding vertex in Vn (G) is n+1. 
 
Remark 3: If G is a path of length n,( n≥2). Then |E(Vn (G))|=4n-3. 
 
Theorem 1: The vict graph Vn (G) of a graph G is connected if and only if G is connected.  
 
Proof: Assume G is disconnected. Then by Remark 1, Vn (G) is disconnected. Hence if G connected, then Vn (G) is 
connected. 
 
Now assume G is a nonseparable. Then by Remark 1, G= Vn (G) which is connected. 
 
The following theorem determiners the number of vertices and edges in Vict graph of a graph.                                                         
 
Theorem 2: If G is a nontrivial connected (p, q) graph, Ci be the number of cutvertices in G and li be the number of 
edges incident with the cutvertices in G. Then vict graph Vn (G) has p+ ∑𝑛𝑛

𝑖𝑖=0 Ci vertices and [∑𝑛𝑛
𝑖𝑖=0 (li+Ci)]+q edges. 

 
Proof: Let G be a connected graph with p vertices and q edges. By the definition of vict graph Vn(G) the number of 
vertices in vict graph Vn(G) is the sum of the vertices of G and cutvertices of G. Thus Vn(G) has P+∑ Ci𝑛𝑛

𝑖𝑖=0  vertices. 
The number of edges in Vn(G) is  the sum of the numbers of edges in G also sum of the number of cutvertices in G and 
number of edges incident to the cutvertices. Thus Vn(G) has [� (li + Ci)] + q 𝑛𝑛

𝑖𝑖=0  edges. 
 
Theorem 3: Let G be a connected (p, q) graph. Then L(G) = n(G) = Vn(G) = G if and only if G is a cycle.  
 
We now present a characterization of graphs whose vict graphs are planar. 
 
For any plane graph G the inner vertex number i(G) of G is the minimum number of vertices not belonging the 
boundary of the exterior region in any embedding of G in the plane. 
                                     
We call the inner vertex number i(G) as Kulli number i(G). 
 
A graph G is said to be minimally nonouterplanar if Kulli number is one or i(G) = 1. 
 
Theorem 4: The vict graph Vn(G) of a planar graph G is planar if and only if G satisfies the following conditions. 

1) G is a tree. 
Or 

2) G does not contain three mutually adjacent cutvertices with Kulli number zero. 
Or 

3) G has a block B with Kulli number and no  cutvertex of B is adjacent to the Kulli number. 
Or 

4) Every block of G is either a cycle or an edge in which at least one vertex of an odd cycle is not a cutvertex. 
Or 

5) G has a cycle Cn, n≥ 4 together with a diagonal edge joining a pair of vertices of any length which are not 
cutvertices.  

 
Proof: Suppose Vn(G) is planar. Now we consider the following cases. 
 
Case-1: Assume G is not a tree with Kulli number zero. Then there exists a block B in G with Kulli number zero. 
Suppose B=C3 and each vertex of B is a cutvertex. Then in Vn(G) the sub graph <Vn(G)> forms a subgraph    
homeomorphic to K3,3.  Thus Vn(G) is nonplanar, a contradiction. 
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Case-2: Assume G has a Kulli number and suppose G has a block B with Kulli number and B has cutvertex v which is 
adjacent to Kulli number of B. Let v1 v2, v3 are adjacent to v and v4. In Vn(G) the vertex v! corresponding to the 
cutvertex v generates an induced subgraph homeomorphic to K3,3. Then by the Theorem D, Vn(G) has at least one 
crossing. Hence Vn(G) is nonplanar, a  contradiction. 
 
Case-3: Assume G has a cycle Cn , (n≥4) together with a diagonal edge joining a pair of vertices of length n-2 which are 
cutvertices. Then  in  Vn (G), vꞋi  is a cutvertex which is adjacent to vi, vi+1, vn , ɏ i=1  and also endvertex which is N(vꞋ i). 
Similarly a cutvertex  vꞋi+2 which is adjacent to vi+1, vi+2, vi+3,  ɏ i=1 and endvertex which is N(vꞋ i+2 ). Where vꞋi   and  vꞋi+2 
are cutvertices corresponding to vi and vi+2. This adjacency will produce one crossing in Vn (G) in planar embedding of 
Vn(G) in any plane. Hence Vn(G) is non planar, a contradiction.    
 
Conversely, for (1) suppose G is a tree. Let C= {v1, v2, v3, …,vn } be the set of cutvertices. In Vn(G),  V [Vn(G)] = V (G) 
U {C} and each vi∈C, 1 ≤ i≤ n adjacent to N(vi) and vi .  On any embedding of Vn(G) which satisfies  [∑𝑛𝑛

𝑖𝑖=0 (li+Ci)]+q 
≤3p-6.   Hence by Theorem A, Vn(G) is planar. 
 
For (2), suppose G has a block B with Kulli number zero. Then G has a set of cutvertices as C= {v1, v2, v3, ,vn }such that 
no three cutvertices of a  block B are mutually adjacent in G. In Vn(G), V [Vn(G)]= V (G) U{C}  and  each vi ∈C,         
1 ≤ i ≤ n adjacent to  N(vi) and vi. On any embedding of Vn(G) which satisfies that the number of edges in Vn(G) is less 
than or equal to 3P-6. Thus by Theorem A, Vn(G) is planar. 
 
For(3), suppose G has a  set  of  blocks as {B1 ,B2,…,Bn } such that either each block has i(Bi) ≥1,   1≤i≤m  or  at least  
one  block  of G  has i(Bj)≥1,  1≤j≤m.  Then no cutvertex of G is adjacent to any of the inner vertex of any Bi, 1≤ i ≤m. 
In any planar embedding of Vn(G) with (pꞋ, qꞋ) satisfies the inequality  qꞋ ≤ 3PꞋ-6.  Hence by Theorem A, Vn(G) is 
planar. 
 
For (4), suppose G has a odd cycle Cn with vertices v1, v2, v3,…,vn, v1   in which at least one vertex of Cn is not a 
cutvertex. In Vn (G)  vꞋ2,vꞋ3,vꞋ4,…..,vꞋn  are cutvertices corresponding  to the  v2, v3, v4,….,vn  ∈ G . And each cutvertex 
vꞋi,  ɏ i=2,3,4,…,n is adjacent to the  vi-1, vi, vi+1 , ɏ  i=2,3,4,….,n. And also endvertex which is N (vꞋi). On any 
embedding of Vn (G) which satisfies that the number of edges in Vn (G) is less than or equal to 3p-6. Thus by Theorem 
A,   Vn (G) is planar. 
 
For (5), suppose G has a cycle Cn (n≥4) with vertices v1, v2, v3,….,vn, v1 in which a diagonal edge e joining a pair of 
vertices of length n-2, which are not cutvertices. But remaining vertices of a cycle Cn are cutvertices. In Vn(G) each 
cutvertex vꞋ i, ɏ i ∈Vn (G) which is adjacent to vi-1, vi, vi+1 , ɏ  i ∈ G  and also endvertices which are N(vꞋ i)  where vꞋ i  
corresponds to cutvertex vi ∈ G. On any embedding of Vn (G) which satisfies [� (li + Ci)]  + q ≤ 3p − 6.𝑛𝑛

𝑖𝑖=0   Hence 
by Theorem A, Vn(G) is planar. 
 
In the following Theorem We establish  a  necessary  and  sufficient  condition  for  the  graphs  whose  Vn(G)  are  
outerplanar. 
 
Theorem 5: Let G be (p, q) graph.  Then vict graph Vn(G) is outerplanar if and only if G is nonseparable  outerplanar  
and  G is either a  path or a cycle. 
 
Proof: Suppose Vn(G) is outerplanar. Then Vn(G) is connected. Hence G is connected. If Vn(G) is K2, then  obviously  
G  is K2 . Now assume G is nonseparable, nonouterplanar. Then there exist a Kulli number and by Remark 1, Vn(G)=G. 
Hence Vn(G) is nonouterplanar. 
 
Suppose G is outerplanar and G is neither a path nor a cycle. Then G has at least a vertex v with deg (v) = 3. Now we 
consider the following cases. 
 
Case-1: Assume v lies on two blocks in which one block is an edge and remaining block is isomorphic to C3. Then 
Vn(G) has an induced subgraph<K4> with Kulli number. Hence Vn(G) is not outerplanar, a contradiction. 
 
Case-2: Assume v lies on three blocks. Then each block incident to v is an edge. Then Vn(G) has a subgraph as K2,3,  
clearly K2,3  has a Kulli number. Hence Vn(G) is not outerplanar, a contradiction. 
 
Conversely, suppose G is nonseparable outerplanar and G is either a path or a cycle.  
 
We consider the following cases. 
 
Case-1: Assume G is a block which is   outerplanar. Then by Remark 1, Vn(G)=G and hence  Vn(G) is outerplanar. 
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Case-2: Assume G is a path with P≥3 vertices. Then by the Theorem B, Vn(G) is maximal outer planar. Hence Vn(G) is 
outerplanar.                                                                                                                              
 
This complete the proof of the theorem. 
 
We now deduce a necessary and sufficient condition for the graphs whose Vn(G) are maximal outerplanar. 
 
Theorem 6: The vict graph Vn(G) of a graph G is maximal outerplanar if and only if G is path. 
 
Proof: Suppose Vn(G) is maximal outerplanar. Then Vn(G) is connected. Hence G is connected. If Vn(G) is K1 or K2, 
then obviously G is K1 or K2. Let G be any connected graph with   P≥3  vertices with degree di and li be the number of 
edges to which the cutvertices Ci belongs in G. Then clearly   Vn(G) has  P+∑Ci   vertices and li+½∑di

2 edges. 
 
Since  Vn(G) is maximal outerplanar, it has 2(P+∑Ci)-3 edges.         
                                                           
Hence   li+½∑di

2 =2(P+∑Ci)-3 which is the sum as ∑di
2 -4P+6=0 

 
By Theorem C, it follows that G is a non empty path.       
                                                             
Conversely, suppose G is a path. We consider the following cases. 
 
Case-1: Suppose G is K1 or K2. Then Vn(G) is K1 or K2 and hence it is maximal outerplanar. 
 
Case-2: Suppose G is a non empty path. Now we prove that Vn(G) is maximal outerplanar. This is proved by induction 
on the number of vertices P(≥2) of G. 
 
It is easy to observe that the vict graph of K2 is maximal outerplanar by case1. 
 
As the indicative hypothesis, let the vict graph of a non empty path with p=n vertices are maximal outerplanar. We now 
show that the vict graph of a path GꞋ with p=n+1 vertices is maximal outerplanar. Let GꞋ  be a path   v1 ,  v2,……., vn , v n+1 
in which v2, v3,………,vn are the cut vertices in  GꞋ and denoted as   v2

!
,  v3

! …., vn
! in Vn(GꞋ),see Figure2. Consider without 

loss of generality   G!
 -vn+1 =G   is a path with n vertices. By the inductive hypothesis, Vn(G) is maximal outerplanar. 

                                                                                                                                                                                                                
  
 
                    GꞋ:                                   
      
 
                     
                    
                        
                     Vn (GꞋ):  
 

 
 
 

Figure-2 
 
The vertices vn

! and vn+1 are two more vertices in Vn(G!) than in Vn(G). We also observe that there are only four edges 
vn

! vn-1,  vn
!vn ,  vn

!vn+ 1   and  vn
 vn+1  in Vn(G!) than in Vn(G).  It is clear that the induced subgraph on the vertices vn-1,     

vn ,  vn+1 ,  vꞋn   is not  K4 . Hence Vn(G!) is outerplanar. We now prove that Vn(G!) is maximal outerplanar with 2n-1 
vertices and has 2(2n-1)-3 edges. Thus, the outerplanar graph Vn(G!) has 2n+1 vertices and  2(2n-1)-3+4 =2(2n-1)-
3edges. Hence Vn(G) is maximal outerplanar. 
 
We now characterize graphs whose vict graphs are minimally nonouterplanar. 
 
Theorem 7: The vict graph Vn(G) of a graph G is minimally nonouterplanar if and only if G satisfies the following 
conditions. 

1) G is a block with Kulli number one. 
Or 

2) G is a path Pn, (n≥3) together with an endedge adjoined to any non endvertex of a path Pn .    
Or 

3) G has a triangle together with a path Pn , (n≥2) adjoined to any vertex of  a  triangle.  
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Proof:  Suppose Vn(G) has a Kulli number. Then Vn(G) is planar. 
 
We consider the following cases: 
 
Case-1: Assume G is a block with Kulli number zero. Then by the Remark 1, Vn(G) =G, a contradiction. 
 
Case-2: Assume G is a block with greater than Kulli number one. Then again by the Remark1, Vn(G)=G, a contraction. 
 
In the following case, we consider the separable graph.   
 
Case-3:  Assume G is a path Pn , (n≥3). Then by the Theorem 6, Vn(G) is a maximal outerplanar, a contradiction. 
 
Case-4: Assume G is not a path. Suppose G is a tree with .   (G) ≥ 3. Then we consider the following  subcases.    
 
Subcase-4.1: Suppose     (G)=4 and G has a cutvertex v of degree 4. Then graph G contains a subgraph isomorphic to 
K1,4.  Thus Vn(G) has a  subgraph as K2,3.  Hence Vn(G) contains Kulli number more than one, a contradiction. 
 
Subcase-4.2: Suppose G contains at least two vertices of degree three. Then G contains a subgraph isomorphic to     
K3,3-C4. Thus Vn(G)  has vertices and edge  joining  K2,3  as a subgraph.  
 
Hence Vn(G) has Kulli number greater than one, a contradiction. 
 
Case-5: Assume G is not a block and G is free from Kulli number. Then we consider the following subcases. 
 
Subcase-5.1: Suppose G is free from Kulli number and G has a cycle C3, together with two paths Pn  and Pm ,(m, n ≥2) 
adjoined to the adjacent vertices of cycle C3. Then in Vn(G), v1,v2,v3∈C3 and v4,v5∈N(v2)UN(v3) and, v2

!
, v3

!∈V((Vn(G)) 
such that v2

!, v1, v2, v3, and v4 from K2,3  as subgraph, similarly  v3, v1, v2, v3, and v5 from another K2,3.  Hence in any   
embedding of Vn(G), it has a Kulli number greater  than one, a contradiction. 
 
Subcase-5.2: Suppose G is free from a Kulli number and has cycle C4, together with path a Pn, (n ≥2) adjoined to any 
vertex of cycle C4. Then by the Theorem 4, Vn(G) is planar. On embedding Vn(G) in  any plane, one  can  easily  verify  
that Vn (G)  has Kulli number greater than one, a contradiction. 
 
Subcase-5.3: Suppose G has a Kulli number greater than one and a cycle Cn, (n ≥3), together with an endedge  adjoined 
to any vertex  of a cycle Cn .Then in Vn(G) v1, v2 , v3,….. vn ∈ Cn , vꞋi ∈N(vi ) where (i=1, 2,..,n) and vi

!
 ∈V(vn(G)), where 

vi 
! , corresponding to the cutvertex vi ∈ G, and vi

!  adjacent to N[V(vi
! )] in Vn(G). This adjacency produces either 

greater than Kulli number one or a nonplanar graph by the Theorem4. On embedding of Vn(G) in any plane, a 
contradiction. 
 
Conversely, for (1) G has no cutvertex.  Thus by Remark1, Vn(G)=G. Hence Vn(G) has Kulli number one.  
 
This Proves (1). 
 
For(2), suppose G  contains  a  path  Pn  (n≥3)  with  vertices  vi, ɏ  i=1, 2, 3….,n. Then an end  edge   adjoined to any 
nonend vertex of vi  of a path Pn,  I = 2, 3,…..,n-1. And v!  be the endvertex adjacent to vi.  In Vn(G), vi, vi-1, vi+-1, v 

!
 and vi

!  

forms K2,3  as a subgraph in Vn(G). Where vi
! correspond to the cutvertex vi ∈ Pn and remaining regions of Vn(G) are 

triangulated. Hence Vn(G) has a Kulli number one.  
 
This proves (2). 
 
For (3), suppose G contains a triangle with vertices vi, (i=1, 2 and 3) and v1, v2, ……, vn are the vertices of a path       
Pn,(n ≥3) . Then any endvertex of a path Pn either v1 or vn adjoined to any vertex vi of a triangle, ɏi ∈ 1, 2 and 3. In 
Vn(G) vertices of vi of a triangle, ɏ i=1, 2, 3 and a vertex vn of a path Pn,  ɏ n ∈ 1, 2,…, n which is a N(vi) and v! forms 
K2,3 as a subgraph in Vn(G).where v! correspond to cutvertex in vi ∈ G, ɏ i ∈ 1, 2, 3  and remaining regions of Vn(G) are 
triangulated. Hence Vn(G) has a Kulli number one.  
 
This Proves (3). 
 
Theorem 8: If G has a cycle Cn(n≥3) together with a path  Pn, (n≥2) adjoined to any vertex of a cycle Cn. Then Vn(G) 
has (n-2) -  Kulli number.   
 
Proof: Suppose Vn(G) has greater than or equal to Kulli number one. Then Vn(G) is connected. Hence G is connected. 
We prove the result by mathematical induction on the number of vertices of a cycle Cn of G. 
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Suppose n=3. Then G has a cycle C3 together with a path Pn adjoined to any vertex of a cycle C3. Thus by Theorem7, 
Vn(G) has a Kulli number one. Hence the result is true for n=3. Assume that result is true for n=m. 
 
Now we consider a cycle Cm together with a path Pn adjoined to any vertex of a cycle Cm.. Then Vn(G) has (m-2)-Kulli 
number.  
 
Suppose n=m+1. Then G has a cycle Cm+1 together with a path Pn adjoined to any vertex of a cycle Cm+1. Then we have 
to prove that Vn(G) has [(m+1)-2]=(m-1) -Kulli number. 
 
Let vm+1 be vertex of G and let G= Cm+1, delete from G the vertex vm+1 by deleting the edges  em=( vm, vm +1 ) and         
em+1 = (vm+1, v1) which are incident with vm+1,  resulting the graph G1 = Cm. By inductive hypothesis Vn(G) has (m-2)- 
Kulli number. 
 
Now rejoin the vertex vm+1 to the vertices vm and v1 of G1 by joining the edges em and em+1 which results the graph G. 
The formation of Vn(G) is an extension of Vn(G1) with additional vertex vm and additional edges em  and em+1. In Vn(G), 
without loss of generality, the vertices v1, vm and vm+1 of a cycle Cm+1 are adjacent to the v!

m+1 Where v!
m+1  correspond to 

a cutvertex vm+1∈Cm+1. This adjacency in Vn(G) produces (m+1) Kulli number in the interior region of a cycle Cm+1  and 
remaining regions of Vn(G) are triangulated. Hence Vn(G) has [(m+1)- 2]=(m-1)-Kulli number. 
 
Theorem 9: No vertex of Vn(G) is a cutvertex. 
 
Proof: Since Vn(G) is a subgraph of G, the only cutvertices of G may be the cutvertices of Vn(G). Thus it is sufficient 
to show that a cutvertex of a connected graph G is not a cutvertex of Vn(G). Let G contains Bi = (i=1, 2,…,n) as  blocks. 
Then there exists vi, 1 ≤ i ≤ n cutvertices in G. In Vn(G), every cutvertex vi ∈ G is adjacent to the corresponding N(vi) 
and vi, ɏ i = 1, 2,…,n. This adjacency produced a non separable graph in Vn(G). Hence no vertex of Vn(G) is a 
cutvertex. 
 
In the following theorem, we develop the result for crossing number of nonplanar graphs. 
 
Theorem 10: The vict graph Vn(G) of K5 and K3,3 has crossing number at least  one. 
 
Proof: Suppose G is isomorphic to K5 or K3,3. Then G has no cutvertex. By the Remark1, Vn(G)=G. On embedding of 
Vn(G)  in any plane, Vn(G)  has at least crossing number one. 
 
In view of the above Theorem we establish the following result for crossing number of a graph which contains a block 
and is nonplanar. 
 
Theorem 11: The vict graph Vn (G) of K3,3 and K5, together with an endedge adjoined to any vertex of K3,3 and K5 has 
crossing number at least two and three.  
 
Proof: Suppose G has K3,3 with vertices V={v1,v2,v3,v4,v5,v6}. Then vertex set V of K3,3 is divided into two subsets as 
V1 and V2 such that each vertex set has three distinct vertices from set V and also no vertex of V1 set is adjacent to each 
other. Similarly as vertex set V2 and V1 U V2 =V. But every vertex of V1 vertex set is adjacent to all the vertices of V2 
vertex set. An endedge is adjacent to any vertex of V1 set or V2 set. 
 
In Vn (G) any one set of vertices either V1 or  V2 each contains three distinct vertices from V and v7 of an endedge are 
adjacent to viꞋ ∈ Vn (G) where viꞋ correspond to a cutvertex  vi∈G,  ɏ i=1,2,3,4,5,6. On embedding of Vn (G) in any 
plane. Produces at least one crossing in Vn(G). By Theorem 10,   K3,3 has at least one crossing. Hence Vn (G) has at least   
two crossing. 
 
Suppose G has K5 with vertices vi, (i=1, 2, 3, 4, 5) such that each vertices of K5 are mutually adjacent to each other in 
G. An endedge is adjoined to any vertex of vi ∈ K5. In Vn (G) every vertex vi ∈ K5 are adjacent to v! and also v6 of an 
endedge of G is adjacent to v!  where v! is a cut vertex corresponding to vi∈G. This adjacency produces at least two 
crossings. On any embedding of  Vn (G) in any plane. But by Theorem 10, K5 has at least one crossing. Thus Vn (G) has 
at least three crossing. 
 
We now present a characterization of planar graph whose vict graph has crossing number 1. 
 
Theorem 12: The vict graph Vn (G) of a graph G has crossing number one if and only if G is planar and (1) or (2) or 
(3) or (4) holds.  

1) G contains three mutually adjacent cutvertices with Kulli number zero. 
Or 

2) G contains an odd cycle Cn, (n≥3) and each vertex of Cn is a cutvertex. 
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Or 

3) G has a block B with Kulli number and a cutvertex of B is adjacent to the Kulli number. 
Or 

4) G has a cycle Cn, n≥4 together with a diagonal edge joining a pair of vertices of any length which are 
cutvertices. 

 
Proof: If G is planar graph satisfying (1) or (2) or (3) or (4) then by Theorem 10, Vn (G) has crossing number at least 
one. Now we show that its crossing number is at most 1. 
 
First assume (1) holds. Let   v1, v2, v3 are three mutually adjacent cutvertices in G. In Vn (G) v1

!, v2
!, v3

! are the vertices 
corresponding to the vertices v1, v2, v3 of G. Then v1, v2, v3, v1

!, v2
! and v3

! forms a  K3,3 as an induced subgraph in Vn 
(G). Hence by Theorem D.  Cr [Vn (G)] = 1. 
 
Assume (2) holds. Let G has a cycle Cn, n≥3, if n=3 then by condition (1), the result is true. For Cn, n≥4 and n is odd, 
let Cn: v1, v2,…….,vn, v1 is a odd cycle and each vi is a cutvertex 1≤i≤n, consider x and y are the  vertices adjacent to        
v1 and vn  [see Fig 3(a)]. On embedding Vn (G) in any plane the vertices v1

! corresponds to v1 is adjacent to v2, v1, vn  
and x, similarly  vn 

! corresponds to vn  is adjacent to  v1, vn,  vn-1  and Y. thus the edges v1
! vn and v1vn

! are intersecting 
with one crossing [see Fig 3(b)]. The remaining cut vertices{v2

!,v3
!,..,Vn-1

!} corresponding to{v2, v3,…,vn-1}are adjacent 
to N(vj) 2 ≤ j ≤ n-1 without any crossing. Hence Vn (G) has crossing number one. 

 
Figure-[3(a)] 

 

 
Figure-[3(b)] 

 
Further (3) holds. For this condition we consider the smallest Kulli number in G which generates a graph contains 
exactly two blocks, one is K2,3  and other as an edge e. Let v be the cutvertex adjacent to Kulli number. In depicting    
Vn (G), it has a subgraph homomorphic to K3,3. Hence Vn (G) has crossing number one. 
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Assume (4) holds. Let G has a cycle Cn,  n≥4, let v1,v2,v3,…,vn,v1 is a cycle and a diagonal edge e joining pair of vertices 
vi and vi+3, ɏ i=1, consider x and y are vertices adjacent to vi and vi+3 [see Fig 4(a)]. On embedding Vn(G) in any plane 
the vertex vꞋi corresponds to vi, ɏ i=1 is adjacent to vi, vi+1,vi+3,vn and x, ɏ i=1, similarly vꞋ i+3  corresponds to               
vi+3 adjacent to vi+2, vi+3, vi+4, vi and y, ɏ i=1. Thus the edges vi vi+3 and vi +1 vꞋi,  ɏ i=1 are intersecting with one crossing 
[see Fig 4(b)]. Hence Vn (G) has crossing number one.            

 
Figure-[4(a)] 

 

 
Figure-[4(b)] 

 
For the converse, suppose Vn (G) has crossing number one. By Theorem10, G is planar. 
 
We consider the following cases. 
 
Case-1: Assume G has a block B with Kulli number zero. 
 
Again we have the following sub cases. 
 
Subcase-1.1: Suppose C= {v1, v2 …, vk}be the set of cutvertices. If no any three vertices of C are mutually adjacent. 
Then by Theorem 4, Vn (G) has crossing number zero, a contradiction. 
 
Subcase-1.2: Suppose there exists two sets  A={vi, vj, vk} i=1, j=1, k=1 and B={vl, vm, vn}  with l=1, m=1, n=1, such 
that every element of A and B are mutually adjacent and A,B∈C. Then in Vn (G) there two sets gives two subgraph 
which are isomorphic to K3,3. Hence Cr [Vn (G)] >1, a contradiction.  
 
Subclass-1.3: suppose G has only even cycle and each vertex of Cn is a cutvertex. Then by Theorem 4. Cr [Vn (G)] = 0, 
a contraction. 
 
Subcase-1.4: Suppose G has at least one odd cycle Cn and at least one vertex v∈Cn is not a cutvertex. Then by 
Theorem 4. Cr [Vn(G)] = 0, a contraction. 
 
Subcase-1.5: Suppose G has only a cycle Cn (n≥4) together with a diagonal edge joining pair vertices of any length 
which are not cutvertices. Then by Theorem 4, Cr [Vn(G)]=0, a contraction.                                                                                                                                                                                                                                                                                                                                                                                                                                                                          
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