# International Research Journal of Pure Algebra-6(2), 2016, 238-246 <br> Available online through www.rjpa.info ISSN 2248-9037 

## CHARACTERIZATION OF VICT GRAPH OF A GRAPH

M. H. MUDDEBIHAL<br>Department of Mathematics Gulbarga University Kalburgi - 585106, India.

JAYASHREE. B. SHETTY* Department of Mathematics Govt. First Grade College Humnabad - 585330, India.

(Received On: 30-01-16; Revised \& Accepted On: 22-02-16)


#### Abstract

In this paper we introduce the concept of Vict graph $V_{n}(G)$ of a graph. Also we determine the number of vertices and edges of $V_{n}(G)$. Further we characterize the graphs whose Vict graphs are planar, outerplanar, maximal outerplanar and minimally nonouterplanar. Finally we develop a necessary and sufficient condition for the Vict graph whose crossing number is one.


## 1. INTRODUCATION

We shall restrict ourselves to finite, undirected without isolated vertices, loops or multiple edges. For all definitions and notations see [2] and [4].

The line graph of a graph $G$ is the graph whose vertex set corresponds to the edges of $G$ such that two vertices of $L(G)$ are adjacent if the corresponding edges of $G$ are adjacent. This concept was first studied by Whitney [3] and was studied in $[8,12,13,14,15,18,19]$. Many other graph valued functions in graph Theory were studied, for example [1, 5, 6, 7, 9, 10, 11, 16, 17]

The following will be useful in the proof of our results.
Theorem A [2]: If G is any planar ( $\mathrm{p}, \mathrm{q}$ ) graph with $\mathrm{p} \geq 3$, then $\mathrm{q} \leq 3 \mathrm{p}-6$.Furthermore, if G has no triangles then $\mathrm{q} \leq 2 \mathrm{p}-4$.
Theorem B [2]: Every maximal outerplanar graph $G$ with $p \geq 3$ vertices has $2 p-3$ edges.
Theorem C [7]: A connected graph with $\mathrm{p} \geq 2$ vertices is non empty path if and only if $\sum \mathrm{di}^{2}=4 \mathrm{p}-6$.
Theorem D [2]: The graph $\mathrm{K}_{5}$ and $\mathrm{K}_{3,3}$ are nonplanar.

## 2. VICT GRAPH

We now define the Vict graph $V_{n}(G)$ of a graph $G$ as the graph whose vertex set is the union of the set of vertices and set of cutvertices of $G$ in which two vertices are adjacent if and only if corresponding vertices of $G$ are adjacent or corresponding members of G are adjacent or incident.

In the Figure1, a graph $G$ and its Vict graph $V_{n}(G)$ are shown. In $V_{n}(G)$, the light vertices are corresponding to the vertices of $G$ and the dark vertices corresponding to the cutvertices of $G$.

A graph $G$ is a subgraph of $V_{n}(G)$.


[^0]

Figure-1
Remark 1: For any non trivial connected graph $G, G=V_{n}(G)$ if and only if $G$ is a block.
Remark 2: If the degree of a cutvertex in $G$ is $n$, then the degree of corresponding vertex in $V_{n}(G)$ is $n+1$.
Remark 3: If $G$ is a path of length $n,(n \geq 2)$. Then $\left|E\left(V_{n}(G)\right)\right|=4 n-3$.
Theorem 1: The vict graph $V_{n}(G)$ of a graph $G$ is connected if and only if $G$ is connected.
Proof: Assume G is disconnected. Then by Remark 1, $V_{n}(G)$ is disconnected. Hence if $G$ connected, then $V_{n}(G)$ is connected.

Now assume $G$ is a nonseparable. Then by Remark $1, G=V_{n}(G)$ which is connected.
The following theorem determiners the number of vertices and edges in Vict graph of a graph.
Theorem 2: If $G$ is a nontrivial connected $(p, q)$ graph, $C_{i}$ be the number of cutvertices in $G$ and $l_{i}$ be the number of edges incident with the cutvertices in $G$. Then vict graph $V_{n}(G)$ has $p+\sum_{i=0}^{n} \quad C_{i}$ vertices and $\left[\sum_{i=0}^{n} \quad\left(l_{i}+C_{i}\right)\right]+q$ edges.

Proof: Let $G$ be a connected graph with $p$ vertices and $q$ edges. By the definition of vict graph $V_{n}(G)$ the number of vertices in vict graph $V_{n}(G)$ is the sum of the vertices of $G$ and cutvertices of $G$. Thus $V_{n}(G)$ has $P+\sum_{i=0}^{n} C i$ vertices. The number of edges in $V_{n}(G)$ is the sum of the numbers of edges in $G$ also sum of the number of cutvertices in $G$ and number of edges incident to the cutvertices. Thus $\mathrm{V}_{\mathrm{n}}(\mathrm{G})$ has $\left[\sum_{i=0}^{n}(\mathrm{li}+\mathrm{Ci})\right]+\mathrm{q}$ edges.

Theorem 3: Let $G$ be a connected $(p, q)$ graph. Then $L(G)=n(G)=V_{n}(G)=G$ if and only if $G$ is a cycle.
We now present a characterization of graphs whose vict graphs are planar.
For any plane graph $G$ the inner vertex number $i(G)$ of $G$ is the minimum number of vertices not belonging the boundary of the exterior region in any embedding of G in the plane.

We call the inner vertex number $\mathrm{i}(\mathrm{G})$ as Kulli number $\mathrm{i}(\mathrm{G})$.
A graph G is said to be minimally nonouterplanar if Kulli number is one or $\mathrm{i}(\mathrm{G})=1$.
Theorem 4: The vict graph $V_{n}(G)$ of a planar graph $G$ is planar if and only if $G$ satisfies the following conditions.

1) $G$ is a tree. Or
2) G does not contain three mutually adjacent cutvertices with Kulli number zero. Or
3) $G$ has a block $B$ with Kulli number and no cutvertex of $B$ is adjacent to the Kulli number. Or
4) Every block of $G$ is either a cycle or an edge in which at least one vertex of an odd cycle is not a cutvertex. Or
5) $G$ has a cycle $C_{n}, n \geq 4$ together with a diagonal edge joining a pair of vertices of any length which are not cutvertices.

Proof: Suppose $\mathrm{V}_{\mathrm{n}}(\mathrm{G})$ is planar. Now we consider the following cases.
Case-1: Assume G is not a tree with Kulli number zero. Then there exists a block B in $G$ with Kulli number zero. Suppose $B=C_{3}$ and each vertex of $B$ is a cutvertex. Then in $V_{n}(G)$ the sub graph $<V_{n}(G)>$ forms a subgraph homeomorphic to $\mathrm{K}_{3,3}$. Thus $\mathrm{V}_{\mathrm{n}}(\mathrm{G})$ is nonplanar, a contradiction.

Case-2: Assume G has a Kulli number and suppose $G$ has a block B with Kulli number and B has cutvertex v which is adjacent to Kulli number of $B$. Let $v_{1} v_{2}, v_{3}$ are adjacent to $v$ and $v_{4}$. In $V_{n}(G)$ the vertex $v^{!}$corresponding to the cutvertex $v$ generates an induced subgraph homeomorphic to $\mathrm{K}_{3,3}$. Then by the Theorem $\mathrm{D}, \mathrm{V}_{\mathrm{n}}(\mathrm{G})$ has at least one crossing. Hence $\mathrm{V}_{\mathrm{n}}(\mathrm{G})$ is nonplanar, a contradiction.

Case-3: Assume $G$ has a cycle $C_{n},(n \geq 4)$ together with a diagonal edge joining a pair of vertices of length $n-2$ which are cutvertices. Then in $V_{n}(G), v_{i}^{\prime}$ is a cutvertex which is adjacent to $v_{i}, v_{i+1}, v_{n}, y i=1$ and also endvertex which is $N\left(v_{i}\right)$. Similarly a cutvertex $v_{i+2}^{1}$ which is adjacent to $v_{i+1}, v_{i+2}, v_{i+3}$, $y i=1$ and endvertex which is $N\left(v_{i+2}\right)$. Where $v_{i}^{\prime}$ and $v_{i+2}^{\prime}$ are cutvertices corresponding to $v_{i}$ and $v_{i+2}$. This adjacency will produce one crossing in $V_{n}(G)$ in planar embedding of $V_{n}(G)$ in any plane. Hence $V_{n}(G)$ is non planar, a contradiction.

Conversely, for (1) suppose $G$ is a tree. Let $C=\left\{v_{1}, v_{2}, v_{3}, \ldots, v_{n}\right\}$ be the set of cutvertices. In $V_{n}(G), V\left[V_{n}(G)\right]=V(G)$ $\mathrm{U}\{\mathrm{C}\}$ and each $\mathrm{v}_{\mathrm{i}} \in \mathrm{C}, 1 \leq \mathrm{i} \leq \mathrm{n}$ adjacent to $\mathrm{N}\left(\mathrm{v}_{\mathrm{i}}\right)$ and $\mathrm{v}_{\mathrm{i}}$. On any embedding of $\mathrm{V}_{\mathrm{n}}(\mathrm{G})$ which satisfies $\left[\sum_{i=0}^{n} \quad\left(\mathrm{l}_{\mathrm{i}}+\mathrm{C}_{\mathrm{i}}\right)\right]+\mathrm{q}$ $\leq 3 p-6$. Hence by Theorem $A, V_{n}(G)$ is planar.

For (2), suppose $G$ has a block B with Kulli number zero. Then $G$ has a set of cutvertices as $C=\left\{v_{1}, v_{2}, v_{3}, v_{n}\right\}$ such that no three cutvertices of a block B are mutually adjacent in $G$. In $V_{n}(G), V\left[V_{n}(G)\right]=V(G) U\{C\}$ and each $v_{i} \in C$, $1 \leq \mathrm{i} \leq \mathrm{n}$ adjacent to $\mathrm{N}\left(\mathrm{v}_{\mathrm{i}}\right)$ and $\mathrm{v}_{\mathrm{i}}$. On any embedding of $\mathrm{V}_{\mathrm{n}}(\mathrm{G})$ which satisfies that the number of edges in $\mathrm{V}_{\mathrm{n}}(\mathrm{G})$ is less than or equal to 3P-6. Thus by Theorem $A, V_{n}(G)$ is planar.

For(3), suppose $G$ has a set of blocks as $\left\{B_{1}, B_{2}, \ldots, B_{n}\right\}$ such that either each block has $i\left(B_{i}\right) \geq 1, \quad 1 \leq i \leq m$ or at least one block of $G$ has $i\left(B_{j}\right) \geq 1,1 \leq j \leq m$. Then no cutvertex of $G$ is adjacent to any of the inner vertex of any $B_{i}, 1 \leq i \leq m$. In any planar embedding of $V_{n}(G)$ with $\left(p^{\prime}, q^{\prime}\right)$ satisfies the inequality $q^{\prime} \leq 3 P^{\prime}-6$. Hence by Theorem $A, V_{n}(G)$ is planar.

For (4), suppose $G$ has a odd cycle $C_{n}$ with vertices $v_{1}, v_{2}, v_{3}, \ldots, v_{n}, v_{1}$ in which at least one vertex of $C_{n}$ is not a cutvertex. In $\mathrm{V}_{\mathrm{n}}(\mathrm{G}) \mathrm{v}_{2}^{\prime}, \mathrm{v}_{3}^{\prime}, \mathrm{v}_{4}^{\prime}, \ldots \ldots, \mathrm{v}_{\mathrm{n}}^{\prime}$ are cutvertices corresponding to the $\mathrm{v}_{2}, \mathrm{v}_{3}, \mathrm{v}_{4}, \ldots, \mathrm{v}_{\mathrm{n}} \in \mathrm{G}$. And each cutvertex $v_{i}^{\prime}, \quad y i=2,3,4, \ldots, n$ is adjacent to the $v_{i-1}, v_{i}, v_{i+1}, y i=2,3,4, \ldots, n$. And also endvertex which is $N\left(v_{i}\right)$. On any embedding of $V_{n}(G)$ which satisfies that the number of edges in $V_{n}(G)$ is less than or equal to 3p-6. Thus by Theorem A, $V_{n}(G)$ is planar.

For (5), suppose $G$ has a cycle $C_{n}(n \geq 4)$ with vertices $v_{1}, v_{2}, v_{3}, \ldots, v_{n}, v_{1}$ in which a diagonal edge e joining a pair of vertices of length $n-2$, which are not cutvertices. But remaining vertices of a cycle $C_{n}$ are cutvertices. In $V_{n}(G)$ each cutvertex $v_{i}$, $y \mathrm{i} \in \mathrm{V}_{\mathrm{n}}(\mathrm{G})$ which is adjacent to $\mathrm{v}_{\mathrm{i}-1}, v_{\mathrm{i}}, \mathrm{v}_{\mathrm{i}+1}, y \mathrm{i} \in G$ and also endvertices which are $\mathrm{N}\left(\mathrm{v}_{\mathrm{i}}\right)$ where $\mathrm{v}_{\mathrm{i}}$ corresponds to cutvertex $v_{i} \in G$. On any embedding of $V_{n}(G)$ which satisfies [ $\left.\sum_{i=0}^{n}(\mathrm{li}+\mathrm{Ci})\right]+\mathrm{q} \leq 3 \mathrm{p}-6$. Hence by Theorem $A, V_{n}(G)$ is planar.

In the following Theorem We establish a necessary and sufficient condition for the graphs whose $\mathrm{V}_{\mathrm{n}}(\mathrm{G})$ are outerplanar.

Theorem 5: Let $G$ be ( $p, q$ ) graph. Then vict graph $V_{n}(G)$ is outerplanar if and only if $G$ is nonseparable outerplanar and G is either a path or a cycle.

Proof: Suppose $V_{n}(G)$ is outerplanar. Then $V_{n}(G)$ is connected. Hence $G$ is connected. If $V_{n}(G)$ is $K_{2}$, then obviously $G$ is $K_{2}$. Now assume $G$ is nonseparable, nonouterplanar. Then there exist a Kulli number and by Remark 1, $V_{n}(G)=G$. Hence $V_{n}(G)$ is nonouterplanar.

Suppose $G$ is outerplanar and $G$ is neither a path nor a cycle. Then $G$ has at least a vertex $v$ with deg (v) $=3$. Now we consider the following cases.

Case-1: Assume v lies on two blocks in which one block is an edge and remaining block is isomorphic to $\mathrm{C}_{3}$. Then $\mathrm{V}_{\mathrm{n}}(\mathrm{G})$ has an induced subgraph $<\mathrm{K}_{4}>$ with Kulli number. Hence $\mathrm{V}_{\mathrm{n}}(\mathrm{G})$ is not outerplanar, a contradiction.

Case-2: Assume v lies on three blocks. Then each block incident to $v$ is an edge. Then $\mathrm{V}_{\mathrm{n}}(\mathrm{G})$ has a subgraph as $\mathrm{K}_{2,3,}$ clearly $K_{2,3}$ has a Kulli number. Hence $V_{n}(G)$ is not outerplanar, a contradiction.

Conversely, suppose $G$ is nonseparable outerplanar and $G$ is either a path or a cycle.
We consider the following cases.
Case-1: Assume $G$ is a block which is outerplanar. Then by Remark $1, V_{n}(G)=G$ and hence $V_{n}(G)$ is outerplanar.

Case-2: Assume $G$ is a path with $P \geq 3$ vertices. Then by the Theorem $B, V_{n}(G)$ is maximal outer planar. Hence $V_{n}(G)$ is outerplanar.

This complete the proof of the theorem.
We now deduce a necessary and sufficient condition for the graphs whose $V_{n}(G)$ are maximal outerplanar.
Theorem 6: The vict graph $V_{n}(G)$ of a graph $G$ is maximal outerplanar if and only if $G$ is path.
Proof: Suppose $V_{n}(G)$ is maximal outerplanar. Then $V_{n}(G)$ is connected. Hence $G$ is connected. If $V_{n}(G)$ is $K_{1}$ or $K_{2}$, then obviously $G$ is $K_{1}$ or $K_{2}$. Let $G$ be any connected graph with $P \geq 3$ vertices with degree $d_{i}$ and $l_{i}$ be the number of edges to which the cutvertices $C_{i}$ belongs in $G$. Then clearly $V_{n}(G)$ has $P+\sum C_{i}$ vertices and $l_{i}+1 / 2 \sum d_{i}^{2}$ edges.

Since $\mathrm{V}_{\mathrm{n}}(\mathrm{G})$ is maximal outerplanar, it has $2\left(\mathrm{P}+\sum \mathrm{C}_{\mathrm{i}}\right)-3$ edges.
Hence $\mathrm{l}_{\mathrm{i}}+1 / 2 \sum \mathrm{~d}_{\mathrm{i}}{ }^{2}=2\left(\mathrm{P}+\sum \mathrm{C}_{\mathrm{i}}\right)-3$ which is the sum as $\sum \mathrm{d}_{\mathrm{i}}{ }^{2}-4 \mathrm{P}+6=0$
By Theorem C, it follows that $G$ is a non empty path.
Conversely, suppose G is a path. We consider the following cases.
Case-1: Suppose $G$ is $K_{1}$ or $K_{2}$. Then $V_{n}(G)$ is $K_{1}$ or $K_{2}$ and hence it is maximal outerplanar.
Case-2: Suppose G is a non empty path. Now we prove that $V_{n}(G)$ is maximal outerplanar. This is proved by induction on the number of vertices $\mathrm{P}(\geq 2)$ of G .

It is easy to observe that the vict graph of $K_{2}$ is maximal outerplanar by case1.
As the indicative hypothesis, let the vict graph of a non empty path with $\mathrm{p}=\mathrm{n}$ vertices are maximal outerplanar. We now show that the vict graph of a path $G^{\prime}$ with $p=n+1$ vertices is maximal outerplanar. Let $G^{\prime}$ be a path $v_{1}, v_{2}, \ldots \ldots ., v_{n}, v_{n+1}$ in which $v_{2}, v_{3}, \ldots \ldots . . ., v_{n}$ are the cut vertices in $G^{\prime}$ and denoted as $v_{2}!v_{3}^{!} \ldots, v_{n}!$ in $V_{n}\left(G^{\prime}\right)$, see Figure2. Consider without loss of generality $G^{!}-v_{n+1}=G$ is a path with $n$ vertices. By the inductive hypothesis, $V_{n}(G)$ is maximal outerplanar.


Figure-2
The vertices $v_{n}$ ! and $v_{n+1}$ are two more vertices in $V_{n}\left(G^{!}\right)$than in $V_{n}(G)$. We also observe that there are only four edges $v_{n}!v_{n-1}, v_{n}!v_{n}, V_{n}^{\prime} v_{n+1}$ and $v_{n} v_{n+1}$ in $V_{n}(G!)$ than in $V_{n}(G)$. It is clear that the induced subgraph on the vertices $v_{n-1}$, $\mathrm{v}_{\mathrm{n}}, \mathrm{V}_{\mathrm{n}+1}, \mathrm{v}_{\mathrm{n}}^{\prime}$ is not $\mathrm{K}_{4}$. Hence $\mathrm{V}_{\mathrm{n}}\left(\mathrm{G}^{\prime}\right)$ is outerplanar. We now prove that $\mathrm{V}_{\mathrm{n}}\left(\mathrm{G}^{\prime}\right)$ is maximal outerplanar with $2 \mathrm{n}-1$ vertices and has $2(2 n-1)-3$ edges. Thus, the outerplanar graph $V_{n}\left(G^{\prime}\right)$ has $2 n+1$ vertices and $2(2 n-1)-3+4=2(2 n-1)-$ 3edges. Hence $\mathrm{V}_{\mathrm{n}}(\mathrm{G})$ is maximal outerplanar.

We now characterize graphs whose vict graphs are minimally nonouterplanar.
Theorem 7: The vict graph $V_{n}(G)$ of a graph $G$ is minimally nonouterplanar if and only if $G$ satisfies the following conditions.

1) $G$ is a block with Kulli number one.

Or
2) G is a path $P_{n},(n \geq 3)$ together with an endedge adjoined to any non endvertex of a path $P_{n}$.

Or
3) $G$ has a triangle together with a path $P_{n},(n \geq 2)$ adjoined to any vertex of a triangle.

Proof: Suppose $\mathrm{V}_{\mathrm{n}}(\mathrm{G})$ has a Kulli number. Then $\mathrm{V}_{\mathrm{n}}(\mathrm{G})$ is planar.
We consider the following cases:
Case-1: Assume G is a block with Kulli number zero. Then by the Remark 1, $\mathrm{V}_{\mathrm{n}}(\mathrm{G})=\mathrm{G}$, a contradiction.
Case-2: Assume G is a block with greater than Kulli number one. Then again by the Remark1, $\mathrm{V}_{\mathrm{n}}(\mathrm{G})=\mathrm{G}$, a contraction.
In the following case, we consider the separable graph.
Case-3: Assume $G$ is a path $P_{n},(n \geq 3)$. Then by the Theorem $6, V_{n}(G)$ is a maximal outerplanar, a contradiction.
Case-4: Assume $G$ is not a path. Suppose $G$ is a tree with $\Delta(G) \geq 3$. Then we consider the following subcases.
Subcase-4.1: Suppose $\Delta(G)=4$ and $G$ has a cutvertex v of degree 4. Then graph $G$ contains a subgraph isomorphic to $\mathrm{K}_{1,4}$. Thus $\mathrm{V}_{\mathrm{n}}(\mathrm{G})$ has a subgraph as $\mathrm{K}_{2,3}$. Hence $\mathrm{V}_{\mathrm{n}}(\mathrm{G})$ contains Kulli number more than one, a contradiction.

Subcase-4.2: Suppose G contains at least two vertices of degree three. Then G contains a subgraph isomorphic to $\mathrm{K}_{3,3}-\mathrm{C}_{4}$. Thus $\mathrm{V}_{\mathrm{n}}(\mathrm{G})$ has vertices and edge joining $\mathrm{K}_{2,3}$ as a subgraph.

Hence $V_{n}(G)$ has Kulli number greater than one, a contradiction.
Case-5: Assume G is not a block and G is free from Kulli number. Then we consider the following subcases.
Subcase-5.1: Suppose $G$ is free from Kulli number and $G$ has a cycle $C_{3}$, together with two paths $P_{n}$ and $P_{m},(m, n \geq 2)$ adjoined to the adjacent vertices of cycle $C_{3}$. Then in $V_{n}(G), v_{1}, V_{2}, V_{3} \in C_{3}$ and $v_{4}, V_{5} \in N\left(v_{2}\right) U N\left(v_{3}\right)$ and, $v_{2}{ }^{!}, v_{3}{ }^{!} \in V\left(\left(V_{n}(G)\right)\right.$ such that $v_{2}{ }^{\prime}, v_{1}, v_{2}, v_{3}$, and $v_{4}$ from $K_{2,3}$ as subgraph, similarly $v_{3}, v_{1}, v_{2}, v_{3}$, and $v_{5}$ from another $K_{2,3}$. Hence in any embedding of $\mathrm{V}_{\mathrm{n}}(\mathrm{G})$, it has a Kulli number greater than one, a contradiction.

Subcase-5.2: Suppose $G$ is free from a Kulli number and has cycle $C_{4}$, together with path a $P_{n}$, ( $n \geq 2$ ) adjoined to any vertex of cycle $C_{4}$. Then by the Theorem $4, V_{n}(G)$ is planar. On embedding $V_{n}(G)$ in any plane, one can easily verify that $\mathrm{V}_{\mathrm{n}}(\mathrm{G})$ has Kulli number greater than one, a contradiction.

Subcase-5.3: Suppose $G$ has a Kulli number greater than one and a cycle $C_{n},(n \geq 3)$, together with an endedge adjoined to any vertex of a cycle $C_{n}$. Then in $V_{n}(G) v_{1}, v_{2}, v_{3}, \ldots . . v_{n} \in C_{n}, v_{i}^{\prime} \in N\left(v_{i}\right)$ where $(i=1,2, \ldots, n)$ and $v_{i}^{\prime} \in V\left(v_{n}(G)\right)$, where $v_{i}!$, corresponding to the cutvertex $v_{i} \in G$, and $v_{i}^{!}$adjacent to $N\left[V\left(v_{i}^{!}\right)\right]$in $V_{n}(G)$. This adjacency produces either greater than Kulli number one or a nonplanar graph by the Theorem4. On embedding of $\mathrm{V}_{\mathrm{n}}(\mathrm{G})$ in any plane, a contradiction.

Conversely, for (1) G has no cutvertex. Thus by Remark1, $\mathrm{V}_{\mathrm{n}}(\mathrm{G})=\mathrm{G}$. Hence $\mathrm{V}_{\mathrm{n}}(\mathrm{G})$ has Kulli number one.
This Proves (1).
For(2), suppose $G$ contains a path $P_{n}(n \geq 3)$ with vertices $v_{i}, y i=1,2,3 \ldots, n$. Then an end edge adjoined to any nonend vertex of $v_{i}$ of a path $P_{n}, I=2,3, \ldots \ldots, n-1$. And $v^{!}$be the endvertex adjacent to $v_{i \text {. }}$ In $V_{n}(G), v_{i}, v_{i-1}, v_{i+-1}, v^{!}$and $v_{i}^{!}$ forms $K_{2,3}$ as a subgraph in $V_{n}(G)$. Where $v_{i}^{\prime}$ correspond to the cutvertex $v_{i} \in P_{n}$ and remaining regions of $V_{n}(G)$ are triangulated. Hence $V_{n}(G)$ has a Kulli number one.

This proves (2).
For (3), suppose $G$ contains a triangle with vertices $v_{i}$, $\left(i=1,2\right.$ and 3 ) and $v_{1}, v_{2}, \ldots \ldots, v_{n}$ are the vertices of a path $P_{n},(n \geq 3)$. Then any endvertex of a path $P_{n}$ either $v_{1}$ or $v_{n}$ adjoined to any vertex $v_{i}$ of a triangle, $y i \in 1,2$ and 3 . In $V_{n}(G)$ vertices of $v_{i}$ of a triangle, $y i=1,2,3$ and a vertex $v_{n}$ of a path $P_{n}, y n \in 1,2, \ldots, n$ which is a $N\left(v_{i}\right)$ and $v^{\prime}$ forms $K_{2,3}$ as a subgraph in $V_{n}(G)$. where $v^{!}$correspond to cutvertex in $v_{i} \in G, y i \in 1,2,3$ and remaining regions of $V_{n}(G)$ are triangulated. Hence $\mathrm{V}_{\mathrm{n}}(\mathrm{G})$ has a Kulli number one.

This Proves (3).
Theorem 8: If $G$ has a cycle $C_{n}(n \geq 3)$ together with a path $P_{n}$, $(n \geq 2)$ adjoined to any vertex of a cycle $C_{n}$. Then $V_{n}(G)$ has ( $\mathrm{n}-2$ ) - Kulli number.

Proof: Suppose $\mathrm{V}_{\mathrm{n}}(\mathrm{G})$ has greater than or equal to Kulli number one. Then $\mathrm{V}_{\mathrm{n}}(\mathrm{G})$ is connected. Hence $G$ is connected. We prove the result by mathematical induction on the number of vertices of a cycle $\mathrm{C}_{\mathrm{n}}$ of G .

Suppose $n=3$. Then $G$ has a cycle $C_{3}$ together with a path $P_{n}$ adjoined to any vertex of a cycle $C_{3}$. Thus by Theorem7, $V_{n}(G)$ has a Kulli number one. Hence the result is true for $n=3$. Assume that result is true for $n=m$.

Now we consider a cycle $C_{m}$ together with a path $P_{n}$ adjoined to any vertex of a cycle $C_{m . .}$. Then $V_{n}(G)$ has (m-2)-Kulli number.

Suppose $n=m+1$. Then $G$ has a cycle $C_{m+1}$ together with a path $P_{n}$ adjoined to any vertex of a cycle $C_{m+1}$. Then we have to prove that $\mathrm{V}_{\mathrm{n}}(\mathrm{G})$ has $[(\mathrm{m}+1)-2]=(\mathrm{m}-1)$-Kulli number.

Let $v_{m+1}$ be vertex of $G$ and let $G=C_{m+1}$, delete from $G$ the vertex $v_{m+1}$ by deleting the edges $e_{m}=\left(v_{m}, v_{m+1}\right)$ and $e_{m+1}=\left(v_{m+1}, v_{1}\right)$ which are incident with $v_{m+1}$, resulting the graph $G_{1}=C_{m}$. By inductive hypothesis $V_{n}(G)$ has (m-2)Kulli number.

Now rejoin the vertex $v_{m+1}$ to the vertices $v_{m}$ and $v_{1}$ of $G_{1}$ by joining the edges $e_{m}$ and $e_{m+1}$ which results the graph $G$. The formation of $V_{n}(G)$ is an extension of $V_{n}\left(G_{1}\right)$ with additional vertex $v_{m}$ and additional edges $e_{m}$ and $e_{m+1}$. In $V_{n}(G)$, without loss of generality, the vertices $\mathrm{v}_{1}, \mathrm{v}_{\mathrm{m}}$ and $\mathrm{v}_{\mathrm{m}+1}$ of a cycle $\mathrm{C}_{\mathrm{m}+1}$ are adjacent to the $\mathrm{v}_{\mathrm{m}+1}^{!}$Where $\mathrm{v}_{\mathrm{m}+1}^{!}$correspond to a cutvertex $\mathrm{v}_{\mathrm{m}+1} \in \mathrm{C}_{\mathrm{m}+1}$. This adjacency in $\mathrm{V}_{\mathrm{n}}(\mathrm{G})$ produces $(\mathrm{m}+1)$ Kulli number in the interior region of a cycle $\mathrm{C}_{\mathrm{m}+1}$ and remaining regions of $V_{n}(G)$ are triangulated. Hence $V_{n}(G)$ has $[(m+1)-2]=(m-1)$-Kulli number.

Theorem 9: No vertex of $V_{n}(G)$ is a cutvertex.
Proof: Since $V_{n}(G)$ is a subgraph of $G$, the only cutvertices of $G$ may be the cutvertices of $V_{n}(G)$. Thus it is sufficient to show that a cutvertex of a connected graph $G$ is not a cutvertex of $V_{n}(G)$. Let $G$ contains $B_{i}=(i=1,2, \ldots, n)$ as blocks. Then there exists $v_{i}, 1 \leq i \leq n$ cutvertices in $G$. In $V_{n}(G)$, every cutvertex $v_{i} \in G$ is adjacent to the corresponding $N\left(v_{i}\right)$ and $v_{i}, y i=1,2, \ldots, n$. This adjacency produced a non separable graph in $V_{n}(G)$. Hence no vertex of $V_{n}(G)$ is a cutvertex.

In the following theorem, we develop the result for crossing number of nonplanar graphs.
Theorem 10: The vict graph $V_{n}(G)$ of $K_{5}$ and $K_{3,3}$ has crossing number at least one.
Proof: Suppose $G$ is isomorphic to $K_{5}$ or $K_{3,3}$. Then $G$ has no cutvertex. By the Remark1, $V_{n}(G)=G$. On embedding of $\mathrm{V}_{\mathrm{n}}(\mathrm{G})$ in any plane, $\mathrm{V}_{\mathrm{n}}(\mathrm{G})$ has at least crossing number one.

In view of the above Theorem we establish the following result for crossing number of a graph which contains a block and is nonplanar.

Theorem 11: The vict graph $V_{n}(G)$ of $K_{3,3}$ and $K_{5,}$ together with an endedge adjoined to any vertex of $K_{3,3}$ and $K_{5}$ has crossing number at least two and three.

Proof: Suppose $G$ has $K_{3,3}$ with vertices $V=\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}, \mathrm{v}_{4}, \mathrm{v}_{5}, \mathrm{v}_{6}\right\}$. Then vertex set V of $\mathrm{K}_{3,3}$ is divided into two subsets as $\mathrm{V}_{1}$ and $\mathrm{V}_{2}$ such that each vertex set has three distinct vertices from set V and also no vertex of $\mathrm{V}_{1}$ set is adjacent to each other. Similarly as vertex set $V_{2}$ and $V_{1} U V_{2}=V$. But every vertex of $V_{1}$ vertex set is adjacent to all the vertices of $V_{2}$ vertex set. An endedge is adjacent to any vertex of $V_{1}$ set or $V_{2}$ set.

In $V_{n}(G)$ any one set of vertices either $V_{1}$ or $V_{2}$ each contains three distinct vertices from $V$ and $v_{7}$ of an endedge are adjacent to $v_{i}^{\prime} \in V_{n}(G)$ where $v_{i}^{\prime}$ correspond to a cutvertex $v_{i} \in G, y i=1,2,3,4,5,6$. On embedding of $V_{n}(G)$ in any plane. Produces at least one crossing in $\mathrm{V}_{\mathrm{n}}(\mathrm{G})$. By Theorem 10, $\mathrm{K}_{3,3}$ has at least one crossing. Hence $\mathrm{V}_{\mathrm{n}}(\mathrm{G})$ has at least two crossing.

Suppose $G$ has $K_{5}$ with vertices $v_{i}$, $(i=1,2,3,4,5)$ such that each vertices of $K_{5}$ are mutually adjacent to each other in $G$. An endedge is adjoined to any vertex of $v_{i} \in K_{5}$. In $V_{n}(G)$ every vertex $v_{i} \in K_{5}$ are adjacent to $v^{!}$and also $v_{6}$ of an endedge of $G$ is adjacent to $v^{!}$where $v$ ! is a cut vertex corresponding to $v_{i} \in G$. This adjacency produces at least two crossings. On any embedding of $V_{n}(G)$ in any plane. But by Theorem $10, K_{5}$ has at least one crossing. Thus $V_{n}(G)$ has at least three crossing.

We now present a characterization of planar graph whose vict graph has crossing number 1.
Theorem 12: The vict graph $V_{n}(G)$ of a graph $G$ has crossing number one if and only if $G$ is planar and (1) or (2) or (3) or (4) holds.

1) G contains three mutually adjacent cutvertices with Kulli number zero.

Or
2) G contains an odd cycle $C_{n},(n \geq 3)$ and each vertex of $C_{n}$ is a cutvertex.

Or
3) G has a block B with Kulli number and a cutvertex of B is adjacent to the Kulli number. Or
4) $G$ has a cycle $C_{n}, n \geq 4$ together with a diagonal edge joining a pair of vertices of any length which are cutvertices.

Proof: If G is planar graph satisfying (1) or (2) or (3) or (4) then by Theorem 10, $\mathrm{V}_{\mathrm{n}}(\mathrm{G})$ has crossing number at least one. Now we show that its crossing number is at most 1.

First assume (1) holds. Let $v_{1}, v_{2}, v_{3}$ are three mutually adjacent cutvertices in $G$. In $V_{n}(G) v_{1}{ }^{!}, v_{2}{ }^{!}, v_{3}$ ! are the vertices corresponding to the vertices $v_{1}, v_{2}, v_{3}$ of $G$. Then $v_{1}, v_{2}, v_{3}, v_{1}{ }^{!}, v_{2}{ }^{!}$and $v_{3}{ }^{!}$forms a $K_{3,3}$ as an induced subgraph in $V_{n}$ (G). Hence by Theorem D. $\mathrm{C}_{\mathrm{r}}\left[\mathrm{V}_{\mathrm{n}}(\mathrm{G})\right]=1$.

Assume (2) holds. Let $G$ has a cycle $C_{n}, n \geq 3$, if $n=3$ then by condition (1), the result is true. For $C_{n}, n \geq 4$ and $n$ is odd, let $\mathrm{C}_{\mathrm{n}}: \mathrm{v}_{1}, \mathrm{v}_{2}, \ldots \ldots ., \mathrm{v}_{\mathrm{n}}, \mathrm{v}_{1}$ is a odd cycle and each $\mathrm{v}_{\mathrm{i}}$ is a cutvertex $1 \leq \mathrm{i} \leq \mathrm{n}$, consider x and y are the vertices adjacent to $v_{1}$ and $v_{n}$ [see Fig $3(a)$ ]. On embedding $V_{n}(G)$ in any plane the vertices $v_{1}{ }^{!}$corresponds to $v_{1}$ is adjacent to $v_{2}, v_{1}, v_{n}$ and $x$, similarly $v_{n}$ ! corresponds to $v_{n}$ is adjacent to $v_{1}, v_{n}, v_{n-1}$ and $Y$. thus the edges $v_{1}^{!} v_{n}$ and $v_{1} v_{n}$ ! are intersecting with one crossing [see Fig 3 (b)]. The remaining cut vertices $\left\{\mathrm{v}_{2}^{\prime}, \mathrm{v}_{3}!, \ldots, \mathrm{V}_{\mathrm{n}-1}!\right\}$ corresponding to $\left\{\mathrm{v}_{2}, \mathrm{v}_{3}, \ldots, \mathrm{v}_{\mathrm{n}-1}\right\}$ are adjacent to $\mathrm{N}\left(\mathrm{v}_{\mathrm{j}}\right) 2 \leq \mathrm{j} \leq \mathrm{n}-1$ without any crossing. Hence $\mathrm{V}_{\mathrm{n}}(\mathrm{G})$ has crossing number one.


Figure-[3(a)]


Figure-[3(b)]
Further (3) holds. For this condition we consider the smallest Kulli number in $G$ which generates a graph contains exactly two blocks, one is $\mathrm{K}_{2,3}$ and other as an edge e. Let v be the cutvertex adjacent to Kulli number. In depicting $V_{n}(G)$, it has a subgraph homomorphic to $K_{3,3}$. Hence $V_{n}(G)$ has crossing number one.

Assume (4) holds. Let $G$ has a cycle $C_{n, ~} n \geq 4$, let $\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}, \ldots, \mathrm{v}_{\mathrm{n}}, \mathrm{v}_{1}$ is a cycle and a diagonal edge e joining pair of vertices $v_{i}$ and $v_{i+3}, y i=1$, consider $x$ and $y$ are vertices adjacent to $v_{i}$ and $v_{i+3}$ [see Fig 4(a)]. On embedding $V_{n}(G)$ in any plane the vertex $v_{i}^{\prime}$ corresponds to $v_{i}, y i=1$ is adjacent to $v_{i}, v_{i+1}, v_{i+3}, v_{n}$ and $x$, $y i=1$, similarly $\mathrm{v}_{\mathrm{i}+3}$ corresponds to $v_{i+3}$ adjacent to $v_{i+2}, v_{i+3}, v_{i+4}, v_{i}$ and $y, y i=1$. Thus the edges $v_{i} v_{i+3}$ and $v_{i+1} v_{i}^{\prime}, y i=1$ are intersecting with one crossing [see Fig 4(b)]. Hence $V_{n}(G)$ has crossing number one.


Figure-[4(a)]


Figure-[4(b)]
For the converse, suppose $V_{n}(G)$ has crossing number one. By Theorem10, $G$ is planar.
We consider the following cases.
Case-1: Assume G has a block B with Kulli number zero.
Again we have the following sub cases.
Subcase-1.1: Suppose $C=\left\{v_{1}, v_{2} \ldots, v_{k}\right\}$ be the set of cutvertices. If no any three vertices of $C$ are mutually adjacent. Then by Theorem $4, \mathrm{~V}_{\mathrm{n}}(\mathrm{G})$ has crossing number zero, a contradiction.

Subcase-1.2: Suppose there exists two sets $A=\left\{v_{i}, v_{j}, v_{k}\right\} i=1, j=1, k=1$ and $B=\left\{v_{l}, v_{m}, v_{n}\right\}$ with $l=1, m=1$, $n=1$, such that every element of $A$ and $B$ are mutually adjacent and $A, B \in C$. Then in $V_{n}(G)$ there two sets gives two subgraph which are isomorphic to $\mathrm{K}_{3,3}$. Hence $\mathrm{C}_{\mathrm{r}}\left[\mathrm{V}_{\mathrm{n}}(\mathrm{G})\right]>1$, a contradiction.

Subclass-1.3: suppose $G$ has only even cycle and each vertex of $C_{n}$ is a cutvertex. Then by Theorem $4 . C_{r}\left[V_{n}(G)\right]=0$, a contraction.

Subcase-1.4: Suppose $G$ has at least one odd cycle $C_{n}$ and at least one vertex $v \in C_{n}$ is not a cutvertex. Then by Theorem 4. $\mathrm{C}_{\mathrm{r}}\left[\mathrm{V}_{\mathrm{n}}(\mathrm{G})\right]=0$, a contraction.

Subcase-1.5: Suppose $G$ has only a cycle $C_{n}(n \geq 4)$ together with a diagonal edge joining pair vertices of any length which are not cutvertices. Then by Theorem $4, C_{r}\left[V_{n}(G)\right]=0$, a contraction.

## REFERENCES

1. F.Harary, A characterization of block graphs, canad. Math. Bull., 6, 1-6 (1963).
2. F.Harary, Graph Theory. Addison-Wesley, Reading Mass. (1974).
3. H. Whitney, congruent graphs and the connectivity of graphs, Amer.J. Math. 54 (1932), 150-168.
4. M. Behzad and G chartrand, An introduction to the Theory graphs, Allyn and Bacon, Inc. Boston (1972).
5. M.H. Muddebihal and P. Usha, Semitotal block nonsplit domination in graphs. J. Analysis and computation, Vol.1.No.1, 31-37 (2005).
6. M.H. Muddebihal, P.Usha and S.C. Milind, Image neighbourhood graph of a graph.J. Mathematics Education. Vol 36.No.2. 92-99 (1998).
7. V.R Kulli, A characterization of paths, J of Mathematics Education vol.IX No1 March 1975,78-79.
8. V.R. Kulli and H.P. Patil, Graph equations for line graphs, total block graphs and semitotal block graphs, Demonstratio Mathematic, 19(1), 37-44 (1986).
9. V.R. Kulli, Interchange graphs and block graphs, J. Karnatak University Sci., 16, 63-68 (1971).
10. V.R. Kulli, On block- cutvertex trees, interchange graphs and block graphs, J. Karnatak University Sci., 18, 315-320 (1973).
11. V.R. Kulli, some relations between block graphs and interchange graphs, J. Karnatak University Sci., 16, 5962 (1971).
12. V.R.Kulli , On maximal minimally nonouterplanar graphs, progress of Mathematics, 9, 43-48 (1975).
13. V.R.Kulli and D.G.Akka, On outerplanar repeated line graphs, Indian J.pure Appl.Math,12(2),195-199 (1981).
14. V.R.Kulli and E. sampathkumar, On the interchange graph of a finite planar graph, J.Indian Math.soc, 37,339341 (1973).
15. V.R.Kulli and H.P.Patil, graph equations for line graphs, middle graphs and entire graphs, J. Karnatak University sci, 23, 25-28 (1978).
16. V.R.Kulli and M.H. Muddebihal (2006), lict and lictact graph of a graph, Jour of analysis and computation vol 12 No 3343.
17. V.R.Kulli and M.H.Muddebihal, Total-block graphs and semitotal-block graphs with crossing numbers, For East. J. Appl. Maths. 4 (1), 99-106 (2000).
18. V.R.Kulli, D.G.Akka and L.W.Bieneke, On line graphs with crossing number 1, J. Graph Theory, 3, 87-90 (1979).
19. V.R.Kulli, on minimally nonouterplanar graphs, proc. Indian Nat. Sci. Acad, A41, 275-280 (1975).

## Source of Support: Nil, Conflict of interest: None Declared

[Copy right © 2016, RJPA. All Rights Reserved. This is an Open Access article distributed under the terms of the International Research Journal of Pure Algebra (IRJPA), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.]


[^0]:    *Corresponding Author: Jayashree. B. Shetty*
    Department of Mathematics Govt. First Grade College Humnabad - 585330, India.

