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ABSTRACT 
The black line graph Bl(G) of a graph G is the graph whose point set is the union of the set of points, lines and blocks 
of G, with two points adjacent if one corresponds to a point of G and other to a line incident with it or one corresponds 
to a block B of G and other to a point v of G and v is in B. In this paper, we establish a necessary and sufficient 
condition for the block line graph of a connected graph to be eulerian. Also we obtain a characterization of graphs 
whose block line graphs are hamiltonian. 
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1. INTRODUCTION 
 
The graphs considered in this paper are finite, undirected without loops and multiple lines. Any undefined term here 
may be found in Kulli [1]. 
 
If B = {u1, u2,…,ur, r≥2} is a block of  a graph G, then we say that point u1 and block B are incident with each other, as 
are u2 and B and so on. If two distinct blocks B1 and B2 of G are incident with a common cut point, then they are 
adjacent blocks. This idea was introduced by Kulli in [2]. The points, lines and blocks are called its members. 
 
The block line graph Bl(G) of a graph G is the graph whose point set is the union of the set of points, lines and blocks 
of G, with two points adjacent if one corresponds to a point and other to a line incident with it or one corresponds to a 
block B of G and other to a point v of G and v is in B. This concept was introduced by Kulli in [3]. Many other graph 
valued functions in graph theory were studied, for example, in [ 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18]. 
  
In this paper, we establish a characterization of graphs whose block line graphs are eulerian. Also some properties of 
hamiltonian block line graphs are obtained. Traversability of some graph valued functions were studied, for example, in 
[ 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29]. 
 
We consider graphs without isolated points. 
 
The following result will be useful to prove our results. 
 
Theorem A [1, p76]: A connected graph G is eulerian if and only if every point of G is the even degree. 
 
2. EULERIAN BLOCK LINE GRAPHS. 
 
Remark 1: If v is point of a graph G and v1 is the corresponding point of v in Bl(G), then ( ) 1deg deg ,

l GB G v v m= +  
whose m is the number of blocks containing v. 
 
Remark 2: If e is a line of a graph G and e1 is the corresponding point of e in Bl(G), then ( ) 1deg 2.

lB G e =  
 
Remark 3: If B is a block of a graph G and Bl is the corresponding point of B in Bl(G), then ( ) 1deg

lB G B n=  where n is 
the number of points in B. 
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Theorem 4: Let G be a nontrivial graph. If G is eulerian then Bl(G) is not eulerian. 
 
Proof: Suppose G is a nontrivial eulerian graph. Then G is connected and by Theorem A, every point of G is of even 
degree. Since every nontrivial connected graph has at least two noncutpoints, it implies that G has a noncutpoint v of 
even degree. By Remark 1, we see that ( ) 1deg

lB G v  is odd, where v1 is the corresponding point of v in Bl(G). Thus by 
Theorem A, Bl(G) is not eulerian. 
 
A necessary and sufficient condition for a graph whose block line graph is eulerian is presented in the following 
theorem. 
 
Theorem 5: Let G be a nontrivial connected graph. The block line graph Bl(G) is eulerian if and only if G satisfies the 
following conditions. 

1. each noncutpoint of G is incident with odd number of lines, 
2. each cutpoint of G is incident with either even number of lines and even number of blocks or odd number of 

lines and odd number of blocks, and 
3. each block of G is incident with even number of points. 

 
Proof: Suppose Bl(G) is eulerian. Let v be a point of Bl(G). Then v is a point or a line or a block of G. We have the 
following 3 cases. 
 
Case-1: Suppose v is a point of G. Then by Remark 1,  

( )deg deg
l GB G v v m= +  

where m is the number of blocks containing v. 
 
We consider the following two subcases. 
 
Subcase-1: Suppose v is a noncutpoint of G. Then m = 1. By Theorem A, ( )deg

lB G v is even. Hence degG v is odd.  
 
Thus (1) holds. 
 
Subcase-2: Suppose v is a cutpoint of G. By Theorem A ( )deg

lB G v  is even. Hence both degG v and m are either even or 
odd. Thus (2) holds. 
 
Case-2: Suppose v is a line e of G. Then by Remark 2, ( )deg 2.

lB G v =  
 
Case-3: Suppose v is a block B of G. Then by Remark 3, deg ( )deg ,

lB G B n=  where n is the number of points in B. By 

Theorem A, ( )deg
lB G B  is even. Thus n is even. Thus (3) holds. 

 
Conversely suppose (1), (2) and (3) hold. Suppose v is a point of Bl(G). Then v is a point or a line or a block of G. If v 
is a point of G, then v is either a noncutpoint or a cutpoint of G. If v is a noncutpoint of G, then by Condition (1) and 
Remark 1, ( )deg

lB G v  is even. If v is a cutpoint of G, then by Condition (2) and Remark 1, ( )deg
lB G v  is even. If v is a 

line e of G, then by Remark 2, ( )deg
lB G e  is even. If v is a block B of G, then by Condition (3) and Remark 3, ( )deg

lB G B  
is even. Thus every point of Bl(G) is of even degree. By Theorem A, Bl(G) is eulerian. 
 
Corollary 6: If G is a nontrivial path, then Bl(G) is eulerian. 
 
Proof: This follows from Theorem 5. 
 
Corollary 7: If G is a cycle, then Bl(G) is not eulerian. 
 
Proof: This follows from Theorem 4. 
 
3. HAMILTONIAN BLOCK LINE GRAPHS 
 
Remark 8[3]: If v is a cut point in G, then the corresponding point v1 of v in Bl(G) is  also a cutpoint. 
 
Proposition 9: If a connected graph G has a cut point, then Bl(G) is not hamiltonian. 
 
Proof: This follows from Remark 8. 
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We obtain a characterization of graphs whose block line graphs are hamiltonian. 
 
Theorem 10: The block line graph Bl(G) of G is hamiltonian if and only if G is P2. 
 
Proof: Suppose G is P2. Then Bl(G) = C4 and hence Bl(G) is hamiltonian. 
 
Conversely suppose Bl(G) is hamiltonian. We now prove that G = P2. On the contrary, assume G ≠ P2. We now 
consider the following cases. 
 
Case-1: Suppose G is disconnected. Then Bl(G) is disconnected Hence Bl(G) is not hamiltonian. 
 
Case-2: Suppose G is a connected graph with a cutpoint. By Proposition 9,  Bl(G) has a cutpoint and hence Bl(G) is not 
hamiltonian. 
 
Case-3: Suppose G is a block B with p≥3 points. Then G has a cycle Cn = v1 v2 v3… vn v1, n≥3. In Bl(G), 
 
C2n = v1 e1 v2 e2 ... en – 1 vn en v1 is a cycle. Let u be a point in Bl(G) corresponding to the block B. Then u is adjacent with 
all the points vi, 1 ≤ i ≤ n, in Bl(G)  Since every pair of points vi and vj are not adjacent in Bl(G), it implies that Bl(G) has 
a subgraph homeomorphic to K2, 3. Thus Bl(G) is not Hamiltonian. 
 
Thus from the above 3 cases, we conclude that G = P2. 
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