SOME PROPERTIES OF LINEAR COMBINATIONS OF TWO IDEMPOTENT MATRICES OVER SKEW FIELD

WENHUI LAN*, JUNQING WANG
School of Science, Tianjin Polytechnic University, Tianjin - 300387, China.

(Received On: 21-12-15; Revised \& Accepted On: 07-02-16)

Abstract

In this paper, idempotent matrices over skew field have been researched and some properties of idempotent matrices were extended from general complex domain to skew field. In this paper, the following conclusions were obtained: (1) the four equivalent conditions of idempotent matrices over skew field;(2) the necessary and sufficient conditions which could infer that the linear combinations $A_{1}+A_{2}$ and $A_{1}-A_{2}$ of idempotent matrices over skew field A_{1}, A_{2} were also idempotent matrices; (3) the necessary and sufficient conditions of nonsingularity of correlative left linear combinations $c_{1} A_{1}+c_{2} A_{2}$ and $c_{1} A_{1} A_{2}+c_{2} A_{2} A_{1}$, where $c_{1}, c_{2} \in K_{A_{1}, A_{2}}$ of idempotent matrices over skew field A_{1}, A_{2}.

Keywords: Idempotent Matrices over Skew Field; Linear Combinations; Idempotency; Nonsingularity.

1. INTRODUCTION

Some properties of linear combinations of idempotent matrices in general complex domain had been proved in the papers available. In 2011, Liu xiaochuan and He mei studied idempotent matrices in number field F using the theory and method of linear space and obtained some equivalent conditions of idempotent matrices ${ }^{[3]}$; then the equivalent conditions of idempotent matrices in number field were extended to skew field in this paper and four equivalent conditions of idempotent matrices over skew field were achieved. In addition, the relationship between idempotent matrices over skew field and their right null space, right column space and rank were discussed, meanwhile, the necessary and sufficient conditions which could infer that the linear combinations $A_{1}+A_{2}$ and $A_{1}-A_{2}$ of idempotent matrices over skew field A_{1}, A_{2} were also idempotent matrices were proved. In 2006, Shan jun researched the nonsingularity problems of non trivial linear combinations of two idempotent matrices by using the null space of the matrices in complex domain and carried out several necessary and sufficient conditions of nonsingularity of linear combinations of two idempotent matrices ${ }^{[6]}$;however, in this paper, those conclusions were extended to skew field and the necessary and sufficient conditions of nonsingularity of correlative left linear combinations $c_{1} A_{1}+c_{2} A_{2}$ and $c_{1} A_{1} A_{2}+c_{2} A_{2} A_{1}\left(\right.$ where $c_{1}, c_{2} \in K_{A_{1}, A_{2}}$) of idempotent matrices over skew field A_{1}, A_{2} were summarized.

In this paper, let K be a skew field, $K^{m \times n}$ represents the set of the unit $m \times n$ matrix, $M_{n}(K)$ represents the set of the unit $n \times n$ matrix , I_{n} is $n \times n$ identity matrix over skew field and $K^{n}=K^{n \times 1} . R_{r}(A)=\left\{A X \mid X \in K^{n}\right\}$ and $N_{r}(A)=\left\{X \in K^{n} \mid \quad A X=0\right\}$ means the subspace of right vector space K^{n} which are called right column space and right null space of A respectively. $K_{A_{1}, A_{2}}=\left\{x \mid X\right.$ is commutative for all of the elements of A_{1} and $\left.A_{2}\right\}$.

Lemma 1: $K^{n}=R_{r}(A)+R_{r}\left(I_{n}-A\right)$.
Lemma 2: $\operatorname{dim} R_{r}(A)=r(A), \operatorname{dim} N_{r}(A)=n-r(A)$.
Lemma 3: Let $A \in M_{n}(K)$, then A is nonsingular if and only if $N_{r}(A)=\{0\}$.

2. MAIN CONCLUSIONS

(1)The idempotency of linear combinations of two idempotent matrices over skew field

Theorem 1: Let $A \in M_{n}(K)$, then the following statements are equivalent:
(1) $A^{2}=A$;
(2) $N_{r}(A)=R_{r}\left(I_{n}-A\right)$;
(3) $r(A)+r\left(I_{n}-A\right)=n$;
(4) $K^{n}=R_{r}(A) \oplus R_{r}\left(I_{n}-A\right)$.

Proof:

$(1) \Rightarrow(2):$ For arbitrary $x \in N_{r}(A), A x=0$ is known, so $x=x-A x=\left(I_{n}-A\right) x \in R_{r}\left(I_{n}-A\right)$. Conversely, for every $x \in R_{r}\left(I_{n}-A\right)$, there exists $y \in K^{n}$, such that $x=\left(I_{n}-A\right) y$, then $A x=\left(A-A^{2}\right) y=0$, and that is $x \in N_{r}(A)$, hence $N_{r}(A)=R_{r}\left(I_{n}-A\right)$.
$(2) \Rightarrow(3):$ From Lemma 2, $r\left(I_{n}-A\right)=\operatorname{dim} R_{r}\left(I_{n}-A\right)=\operatorname{dim} N_{r}(A)=n-r(A)$, thus $r(A)+r\left(I_{n}-A\right)=n$.
(3) $\Rightarrow(4)$: According to Lemma 1,it is clear that $K^{n}=R_{r}(A)+R_{r}\left(I_{n}-A\right)$ and $r(A)+r\left(I_{n}-A\right)=n$, so
$\operatorname{dim} K^{n}=n=\operatorname{dim}\left(R_{r}(A)+R_{r}\left(I_{n}-A\right)\right)$

$$
\begin{aligned}
& =\operatorname{dim} R_{r}(A)+\operatorname{dim}\left(I_{n}-A\right)-\operatorname{dim}\left(R_{r}(A) \bigcap R_{r}\left(I_{n}-A\right)\right) \\
& =r(A)+r\left(I_{n}-A\right)-\operatorname{dim}\left(R_{r}(A) \cap R_{r}\left(I_{n}-A\right)\right) \\
& =n-\operatorname{dim}\left(R_{r}(A) \cap R_{r}\left(I_{n}-A\right)\right)
\end{aligned}
$$

It is obvious that $\operatorname{dim}\left(R_{r}(A) \cap R_{r}\left(I_{n}-A\right)\right)=0$, and that is $R_{r}(A) \cap R_{r}\left(I_{n}-A\right)=\{0\}$, accordingly,

$$
K^{n}=R_{r}(A) \oplus R_{r}\left(I_{n}-A\right)
$$

$(4) \Rightarrow(1):$ For arbitrary $x \in K^{n}, A\left(I_{n}-A\right) x \in R_{r}(A),\left(I_{n}-A\right) A x \in R_{r}\left(I_{n}-A\right)$, because $A\left(I_{n}-A\right) x=\left(I_{n}-A\right) A x=\left(A-A^{2}\right) x,\left(A-A^{2}\right) x \in R_{r}(A) \cap R_{r}\left(I_{n}-A\right)=\{0\}$, from which $\left(A-A^{2}\right) x=0$ is known, which illustrates $A=A^{2}$.

Theorem 2: Let $A_{1}, \quad A_{2} \in M_{n}(K)$.If A_{1}, A_{2} are all idempotent matrices, then $A_{1}+A_{2}$ is idempotent matrix if and only if $A_{1} A_{2}=A_{2} A_{1}=0$ which follows that

$$
R_{r}\left(A_{1}\right) \oplus R_{r}\left(A_{2}\right)=R_{r}\left(A_{1}+A_{2}\right) \text { and } N_{r}\left(A_{1}\right) \cap N_{r}\left(A_{2}\right)=N_{r}\left(A_{1}+A_{2}\right)
$$

Proof: Sufficiency: In view of the conditions above, $\left(A_{1}+A_{2}\right)^{2}=\left(A_{1}+A_{2}\right)\left(A_{1}+A_{2}\right)$
$=A_{1}^{2}+A_{1} A_{2}+A_{2} A_{1}+A_{2}^{2}=A_{1}+A_{2}$, which shows that $A_{1}+A_{2}$ is idempotent matrix.
Necessity: Because of what is known, $\left(A_{1}+A_{2}\right)^{2}=A_{1}+A_{2}=A_{1}^{2}+A_{1} A_{2}+A_{2} A_{1}+A_{2}^{2}=A_{1}+A_{2}+A_{1} A_{2}+A_{2} A_{1}$, which leads to $A_{1} A_{2}+A_{2} A_{1}=0$ and that is $A_{1} A_{2}=-A_{2} A_{1}$. Further, $A_{1} A_{2}=-A_{1} A_{2} A_{1}=A_{2} A_{1} A_{1}=A_{2} A_{1}$, so $A_{1} A_{2}=A_{2} A_{1}=0$, from which, it is clear that $R_{r}\left(A_{1}\right) \subseteq N_{r}\left(A_{2}\right), R_{r}\left(A_{2}\right) \subseteq N_{r}\left(A_{1}\right)$, and $R_{r}\left(A_{1}\right) \cap R_{r}\left(A_{2}\right)=\{0\}$

Obviously, $R_{r}\left(A_{1}+A_{2}\right) \subseteq R_{r}\left(A_{1}\right) \oplus R_{r}\left(A_{2}\right)$.For any $x \in R_{r}\left(A_{1}\right)$, if there exists $y \in K^{n}$ such that

$$
x=A_{1} y=A_{1}^{2} y=\left(A_{1}^{2}+A_{2} A_{1}\right) y=\left(A_{1}+A_{2}\right) A_{1} y, \text { then } R_{r}\left(A_{1}\right) \subseteq R_{r}\left(A_{1}+A_{2}\right)
$$

Similarly, $R_{r}\left(A_{2}\right) \subseteq R_{r}\left(A_{1}+A_{2}\right)$ and then $R_{r}\left(A_{1}\right) \oplus R_{r}\left(A_{2}\right) \subseteq R_{r}\left(A_{1}+A_{2}\right)$, consequently,

$$
R_{r}\left(A_{1}\right) \oplus R_{r}\left(A_{2}\right)=R_{r}\left(A_{1}+A_{2}\right)
$$

Besides, it is easy to know that $N_{r}\left(A_{1}\right) \cap N_{r}\left(A_{2}\right) \subseteq N_{r}\left(A_{1}+A_{2}\right)$. Moreover, for every $x \in N_{r}\left(A_{1}+A_{2}\right)$, $A_{1} x=A_{1}^{2} x=\left(A_{1}^{2}+A_{1} A_{2}\right) x=A_{1}\left(A_{1}+A_{2}\right) x=0=A_{2}\left(A_{1}+A_{2}\right) x=\left(A_{2} A_{1}+A_{2}^{2}\right) x=A_{2}^{2} x=A_{2} x$, then $N_{r}\left(A_{1}+A_{2}\right) \subseteq N_{r}\left(A_{1}\right) \cap N_{r}\left(A_{2}\right)$. Above with the previous, $N_{r}\left(A_{1}\right) \cap N_{r}\left(A_{2}\right)=N_{r}\left(A_{1}+A_{2}\right)$.

Corollary 1: Let $A_{1}, A_{2} \in M_{n}(K)$. If A_{1}, A_{2} are all idempotent matrices, then $A_{1}-A_{2}$ is idempotent matrix if and only if $A_{1} A_{2}=A_{2} A_{1}=A_{2}$ which follows that

$$
N_{r}\left(A_{1}\right) \oplus R_{r}\left(A_{2}\right)=N_{r}\left(A_{1}-A_{2}\right) \text { and } R_{r}\left(A_{1}\right) \bigcap N_{r}\left(A_{2}\right)=R_{r}\left(A_{1}-A_{2}\right)
$$

Proof:

Sufficiency: In terms of what are given in the theorem,
$\left(A_{1}-A_{2}\right)^{2}=A_{1}^{2}-A_{1} A_{2}-A_{2} A_{1}+A_{2}^{2}=A_{1}+A_{2}-A_{1} A_{2}-A_{2} A_{1}=A_{1}-A_{2}$, which means that $A_{1}-A_{2}$ is idempotent matrix.

Necessity: From the conditions above, $I_{n}-\left(A_{1}-A_{2}\right)$ is idempotent matrix and so $\left(I_{n}-A_{1}\right)+A_{2}$. In the same way, $I_{n}-A_{1}$ is idempotent matrix, too. On the basis of Theorem $2,\left(I_{n}-A_{1}\right) A_{2}=A_{2}\left(I_{n}-A_{1}\right)=0$, which completes $A_{1} A_{2}=A_{2} A_{1}=A_{2}$.Further,

$$
\begin{aligned}
& R_{r}\left(I_{n}-A_{1}\right) \oplus R_{r}\left(A_{2}\right)=R_{r}\left(I_{n}-A_{1}+A_{2}\right)=R_{r}\left(I_{n}-\left(A_{1}-A_{2}\right)\right) \text { and } \\
& N_{r}\left(I_{n}-A_{1}\right) \cap N_{r}\left(A_{2}\right)=N_{r}\left(I_{n}-A_{1}+A_{2}\right)=N_{r}\left(I_{n}-\left(A_{1}-A_{2}\right)\right) .
\end{aligned}
$$

Combined with $(1) \Rightarrow(2)$ in Theorem 1 ,

$$
N_{r}\left(A_{1}\right) \oplus R_{r}\left(A_{2}\right)=N_{r}\left(A_{1}-A_{2}\right) \text { and } R_{r}\left(A_{1}\right) \cap N_{r}\left(A_{2}\right)=R_{r}\left(A_{1}-A_{2}\right)
$$

(2) The nonsingularity of left linear combinations of two idempotent matrices over skew field

Theorem 3: Let $A_{1}, A_{2} \in M_{n}(K)$ and A_{1}, A_{2} be idempotent matrices. If a left linear combination $\widetilde{c}_{1} A_{1}+\widetilde{c}_{2} A_{2}$ about A_{1} and A_{2} is nonsingular for some nonzero $\widetilde{c}_{1}, \widetilde{c}_{2} \in K_{A_{1}, A_{2}}$ satisfying $\widetilde{c}_{1}+\widetilde{c}_{2} \neq 0$,then $c_{1} A_{1}+c_{2} A_{2}$ is nonsingular for all nonzero $c_{1}, c_{2} \in K_{A_{1}, A_{2}}$ satisfying $c_{1}+c_{2} \neq 0$.

Proof: For every nonzero $\widetilde{c}_{1}, \widetilde{c}_{2} \in K_{A_{1}, A_{2}}$ such that $\widetilde{c}_{1}+\widetilde{c}_{2} \neq 0$, consider $x \in N_{r}\left(c_{1} A_{1}+c_{2} A_{2}\right)$, then

$$
\begin{equation*}
\left(c_{1} A_{1}+c_{2} A_{2}\right) x=0 \text { and so } c_{1} A_{1} x=-c_{2} A_{2} x \tag{2.1}
\end{equation*}
$$

Premultiplying both sides of (2-1) by A_{1}, A_{2} respectively yields

$$
\begin{align*}
& c_{1} A_{1} x=-c_{2} A_{1} A_{2} x \tag{2.2}\\
& c_{1} A_{2} A_{1} x=-c_{2} A_{2} x \tag{2.3}
\end{align*}
$$

From (2.1), (2.2), (2.3) and notice that $c_{1} \neq 0, c_{2} \neq 0$, then

$$
\begin{equation*}
A_{2} x=A_{1} A_{2} x, \quad A_{1} x=A_{2} A_{1} x \tag{2.4}
\end{equation*}
$$

However, $\left(\widetilde{c}_{1} A_{1}+\widetilde{c}_{2} A_{2}\right)^{2}=\widetilde{c}_{1}^{2} A_{1}+\widetilde{c}_{1} \widetilde{c}_{2} A_{1} A_{2}+\widetilde{c}_{1} \widetilde{c}_{2} A_{2} A_{1}+\widetilde{c}_{2}^{2} A_{2}$, according to (2.4), then

$$
\begin{aligned}
\left(\tilde{c}_{1} A_{1}+\tilde{c}_{2} A_{2}\right)^{2} x & =\tilde{c}_{1}^{2} A_{1} x+\tilde{c}_{1} \tilde{c}_{2} A_{1} A_{2} x+\tilde{c}_{1} \tilde{c}_{2} A_{2} A_{1} x+\tilde{c}_{2}^{2} A_{2} x \\
& =\tilde{c}_{1}^{2} A_{1} x+\tilde{c}_{1} \tilde{c}_{2} A_{2} x+\tilde{c}_{1} \tilde{c}_{2} A_{1} x+\tilde{c}_{2}^{2} A_{2} x \\
& =\tilde{c}_{1}\left(\tilde{c}_{1}+\tilde{c}_{2}\right) A_{1} x+\tilde{c}_{2}\left(\tilde{c}_{1}+\tilde{c}_{2}\right) A_{2} x \\
& =\left(\tilde{c}_{1}+\tilde{c}_{2}\right)\left(\tilde{c}_{1} A_{1}+\tilde{c}_{2} A_{2}\right) x
\end{aligned}
$$

Under the conditions that $\widetilde{c}_{1} A_{1}+\widetilde{c}_{2} A_{2}$ is nonsingular, then

$$
\begin{equation*}
\left(\tilde{c}_{1}+\tilde{c}_{2}\right) x=\left(\tilde{c}_{1} A_{1}+\tilde{c}_{2} A_{2}\right) x=\tilde{c}_{1} A_{1} x+\tilde{c}_{2} A_{2} x \tag{2.5}
\end{equation*}
$$

Premultiplying both sides of (2-5) by A_{1} entails $\widetilde{c}_{1} A_{1} x+\widetilde{c}_{2} A_{1} x=\widetilde{c}_{1} A_{1} x+\widetilde{c}_{2} A_{1} A_{2} x$ and that is $A_{1} x=A_{1} A_{2} x$. In the light of (2-2), $\left(c_{1}+c_{2}\right) A_{1} x=0$ and then $A_{1} x=0=A_{1} A_{2} x$.

Combining those with (2-4), it is sure that $A_{2} x=0$.Evidently, $\left(\tilde{c}_{1}+\tilde{c}_{2}\right) x=0$ according to (2-5), which under the assumption that $\tilde{c}_{1}+\widetilde{c}_{2} \neq 0$ is equivalent to $x=0$.This means that $N_{r}\left(c_{1} A_{1}+c_{2} A_{2}\right)=\{0\}$. From Lemma 3, $c_{1} A_{1}+c_{2} A_{2}$ is nonsingular.

Corollary 2: Let $A_{1}, A_{2} \in M_{n}(K)$, and A_{1}, A_{2} be idempotent matrices. If $A_{1}+A_{2}$ is nonsingular, then for all nonzero $c_{1}, c_{2} \in K_{A_{1}, A_{2}}$ satisfying $c_{1}+c_{2} \neq 0, c_{1} A_{1}+c_{2} A_{2}$ is nonsingular, too.

Theorem 4: Let $A_{1}, A_{2} \in M_{n}(K)$, and A_{1}, A_{2} be idempotent matrices, then for any nonzero $c_{1}, c_{2} \in K_{A_{1}, A_{2}}$, the following statements are equivalent: (1) $A_{1}-A_{2}$ is nonsingualr; (2) $C_{1} A_{1}+c_{2} A_{2}$ and $I_{n}-A_{1} A_{2}$ are nonsingular.

Proof:

$(1) \Rightarrow(2)$: From the proof of Theorem 3,it is known that if $x \in N_{r}\left(c_{1} A_{1}+c_{2} A_{2}\right)$, then x satisfies equalities (2.4), which implicates that $\left(A_{1}-A_{2}\right)^{2} x=\left(A_{1}^{2}-A_{1} A_{2}-A_{2} A_{1}+A_{2}^{2}\right) x=A_{1}^{2} x-A_{1} A_{2} x-A_{2} A_{1} x+A_{2}^{2} x=0$. Moreover, $A_{1}-A_{2}$ is nonsingualr, then $x=0$, which means that $N_{r}\left(c_{1} A_{1}+c_{2} A_{2}\right)=\{0\}$, then $c_{1} A_{1}+c_{2} A_{2}$ is nonsingular. In a similar way, for any $x \in N_{r}\left(I_{n}-A_{1} A_{2}\right),\left(I_{n}-A_{1} A_{2}\right) x=0$ and that is $x=A_{1} A_{2} x$. Premultiplying both sides of the equality above by A_{1}, A_{2}, respectively entails $A_{1} x=A_{1} A_{2} x=x$ and $A_{2} A_{1} x=A_{2} x$, so

$$
\left(A_{1}-A_{2}\right)^{2} x=A_{1} x-A_{1} A_{2} x-A_{2} A_{1} x+A_{2} x=0
$$

As previously, $N_{r}\left(I_{n}-A_{1} A_{2}\right)=\{0\}$, and then $I_{n}-A_{1} A_{2}$ is nonsingular.
$(2) \Rightarrow(1):$ For every $x \in N_{r}\left(A_{1}-A_{2}\right),\left(A_{1}-A_{2}\right) x=0$ and then $A_{1} x=A_{2} x$.
Premultiplying both sides of the equality above by A_{1}, A_{2}, respectively yields $A_{1} x=A_{1} A_{2} x$ and $A_{2} x=A_{2} A_{1} x$, so $\left(c_{1} A_{1}+c_{2} A_{2}\right)\left(I_{n}-A_{1} A_{2}\right) x=\left(c_{1} A_{1}+c_{2} A_{2}-c_{1} A_{1} A_{2}-c_{2} A_{2} A_{1} A_{2}\right) x=c_{2} A_{2} x-c_{2} A_{2} A_{1} x=0 \quad$ Furthermore, $c_{1} A_{1}+c_{2} A_{2}$ and $I_{n}-A_{1} A_{2}$ are all nonsingular, then $x=0$, which implicates that $N_{r}\left(A_{1}-A_{2}\right)=\{0\}$, thus $A_{1}-A_{2}$ is nonsingualr.s

Corollary 3: Let $A_{1}, A_{2} \in M_{n}(K)$, and A_{1}, A_{2} be idempotent matrices, then the following statements are equivalent: (1) $A_{1}-A_{2}$ is nonsingualr; (2) $A_{1}+A_{2}$ and $I_{n}-A_{1} A_{2}$ are nonsingular.

Theorem 5: For any $A_{1}, A_{2} \in M_{n}(K)$ which satisfies A_{1}, A_{2} are idempotent matrices, and any nonzero $c_{1}, c_{2} \in K_{A_{1}, A_{2}}$ such that $c_{1}+c_{2} \neq 0$, then $c_{1} A_{1}+c_{2} A_{2}$ is nonsingular if and only if

$$
R_{r}\left(A_{1}\left(I_{n}-A_{2}\right)\right) \cap R_{r}\left(A_{2}\left(I_{n}-A_{1}\right)\right)=\{0\} \text { as well as } N_{r}\left(A_{1}\right) \cap N_{r}\left(A_{2}\right)=\{0\}
$$

Proof: Sufficiency: For arbitrary $x \in N_{r}\left(c_{1} A_{1}+c_{2} A_{2}\right)$, from (2.2), (2.3), (2.4) in the proof of Theorem 3, it is known that $\left(c_{1}+c_{2}\right) A_{1} x=c_{1} A_{1} x+c_{2} A_{1} x=-c_{2} A_{1} A_{2} x+c_{2} A_{1} x=c_{2} A_{1}\left(I_{n}-A_{2}\right) x$, then $A_{1} x \in R_{r}\left(A_{1}\left(I_{n}-A_{2}\right)\right)$. In addition, $\left(c_{1}+c_{2}\right) A_{1} x=-c_{2} A_{2} x+c_{2} A_{2} A_{1} x=-c_{2} A_{2}\left(I_{n}-A_{1}\right) x$,so $A_{1} x \in R_{r}\left(A_{2}\left(I_{n}-A_{1}\right)\right)$ and therefore $A_{1} x \in R_{r}\left(A_{1}\left(I_{n}-A_{2}\right)\right) \bigcap R_{r}\left(A_{2}\left(I_{n}-A_{1}\right)\right)=\{0\}$, which impletes $A_{1} x=0$. Similarly, $A_{2} x=0$.In terms of all of the above, $x \in N_{r}\left(A_{1}\right) \cap N_{r}\left(A_{2}\right)=\{0\}$, then $x=0$. Obviously, $N_{r}\left(c_{1} A_{1}+c_{2} A_{2}\right)=\{0\}$, so $c_{1} A_{1}+c_{2} A_{2}$ is nonsingular.

Necessity: From what is known in the conditions, for any $x \in R_{r}\left(A_{1}\left(I_{n}-A_{2}\right)\right) \cap R_{r}\left(A_{2}\left(I_{n}-A_{1}\right)\right)$, if there exists $\alpha, \quad \beta \in K^{n}$ such that
and

$$
\begin{aligned}
& x=A_{1}\left(I_{n}-A_{2}\right) \alpha=A_{1}^{2}\left(\left(I_{n}-A_{2}\right) \alpha\right) \in R_{r}\left(A_{1}\right) \\
& x=A_{2}\left(I_{n}-A_{1}\right) \beta=A_{2}^{2}\left(\left(I_{n}-A_{1}\right) \beta\right) \in R_{r}\left(A_{2}\right), \text { then } x=A_{1} x=A_{2} x
\end{aligned}
$$

Hence,

$$
\begin{aligned}
c_{1}\left(c_{1} A_{1}+c_{2} A_{2}\right) x & =c_{1}\left(c_{1} A_{1} x+c_{2} A_{2} x\right) \\
& =c_{1}\left(c_{1} A_{1} x+c_{2} A_{1} x\right) \\
& =c_{1}\left(c_{1}+c_{2}\right) A_{1} x=c_{1}\left(c_{1}+c_{2}\right) x \\
& =\left(c_{1}+c_{2}\right)\left[c_{1} x+\left(c_{2} A_{2}-c_{2} A_{2}^{2}\right) \alpha\right] \\
& =\left(c_{1}+c_{2}\right)\left[c_{1} x+c_{2} A_{2}\left(I_{n}-A_{2}\right) \alpha\right] \\
& =\left(c_{1}+c_{2}\right)\left[c_{1} A_{1}\left(I_{n}-A_{2}\right) \alpha+c_{2} A_{2}\left(I_{n}-A_{2}\right) \alpha\right] \\
& =\left(c_{1}+c_{2}\right)\left(c_{1} A_{1}+c_{2} A_{2}\right)\left(I_{n}-A_{2}\right) \alpha
\end{aligned}
$$

Besides, $c_{1} A_{1}+c_{2} A_{2}$ is nonsingular, then $c_{1} x=\left(c_{1}+c_{2}\right)\left(I_{n}-A_{2}\right) \alpha$. Premultiplying both sides of the above equality by A_{1} produces $c_{1} A_{1} x=\left(c_{1}+c_{2}\right) A_{1}\left(I_{n}-A_{2}\right) \alpha=\left(c_{1}+c_{2}\right) x$, and that is $c_{1} x=\left(c_{1}+c_{2}\right) x$, then $c_{2} x=0$. It is easy to know that $x=0$, consequently, $R_{r}\left(A_{1}\left(I_{n}-A_{2}\right)\right) \cap R_{r}\left(A_{2}\left(I_{n}-A_{1}\right)\right)=\{0\}$.

On the other hand, for every $x \in N_{r}\left(A_{1}\right) \cap N_{r}\left(A_{2}\right), A_{1} x=0, A_{2} x=0$, and then $\left(c_{1} A_{1}+c_{2} A_{2}\right) x=c_{1} A_{1} x+c_{2} A_{2} x=0$.
Since $c_{1} A_{1}+c_{2} A_{2}$ is nonsingular, $x=0$, and then $N_{r}\left(A_{1}\right) \cap N_{r}\left(A_{2}\right)=\{0\}$.
Theorem 6: Let $A_{1}, A_{2} \in M_{n}(K)$, and A_{1}, A_{2} be idempotent matrices. If there exists nonzero $c_{1}, c_{2} \in K_{A_{1}, A_{2}}$ satisfying $c_{1}+c_{2} \neq 0$, then $c_{1} A_{1} A_{2}+c_{2} A_{2} A_{1}$ is nonsingular if and only if $c_{1} A_{1}+c_{2} A_{2}$ and $I_{n}-A_{1}-A_{2}$ are all nonsingular.

Proof: For $\left(c_{1} A_{1}+c_{2} A_{2}\right)\left(I_{n}-A_{1}-A_{2}\right)=c_{1} A_{1}+c_{2} A_{2}-c_{1} A_{1}^{2}-c_{2} A_{2} A_{1}-c_{1} A_{1} A_{2}-c_{2} A_{2}^{2}=-\left(c_{1} A_{1} A_{2}+c_{2} A_{2} A_{1}\right)$, then $c_{1} A_{1} A_{2}+c_{2} A_{2} A_{1}$ is nonsingular if and only if $c_{1} A_{1}+c_{2} A_{2}$ and $I_{n}-A_{1}-A_{2}$ are all nonsingular.

Corollary 4: Let $A_{1}, A_{2} \in M_{n}(K)$, and A_{1}, A_{2} be idempotent matrices, then $A_{1} A_{2}+A_{2} A_{1}$ is nonsingular if and only if $A_{1}+A_{2}$ and $I_{n}-A_{1}-A_{2}$ are all nonsingular.

REFERENCES

1. Wajin Zhuang, Introduction of Matrix Theory over Skew Field [M]. Beijing: Science press, 2006.
2. Qi Yan. Linear Combinations of Two Idempotent matrices [J]. Mathematics Learning and Research:2011,31 (2):88
3. Xiaochuan Liu, Mei He. The Necessary and Sufficient Conditions for Idempotent Matrix and Rankidempotent Matrix [J]. Journal of Shanxi Datong University(Natural Science): 2011,27(1): 9-11
4. Yuedi Zeng. Some Research on Special Matrices over Skew Field [D]. Master Degree Thesis of Science of Zhangzhou Normal University:2007,4-9
5. Jerzy K.Baksalary, Oskar Maria Baksalary. Nonsingularity of linear combinations of idempotent matrices [J]. Linear Algebra and its Application: 2004, 388: 25-29
6. Jun Shan. Some Conditions of Nonsingularity of Linear Combinations of Idempotent Matrices [J].Journal of Qinzhou University: 2006, 21(6): 17-19.

Source of Support: Nil, Conflict of interest: None Declared

[Copy right © 2016, RJPA. All Rights Reserved. This is an Open Access article distributed under the terms of the International Research Journal of Pure Algebra (IRJPA), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.]

