
International Research Journal of Pure Algebra-6(4), 2016, 285-287 

 Available online through www.rjpa.info  ISSN 2248–9037  

International Research Journal of Pure Algebra-Vol.-6(3), March – 2016                                                                                                   285 

 
NILPOTENCY OF IDEALS GENERATED BY SETS CONTAINED IN THE CENTER 

 
1M. MANJULA DEVI*, 2K. SUVARNA 

 
1,2Department of Mathematics,  

Sri Krishnadevaraya University, Anantapuramu-515003 (A.P.), India. 
 

(Received On: 20-04-16; Revised & Accepted On: 30-04-16) 
 
 

ABSTRACT 
In this paper we consider R be a nonassociative and noncommutative ring. Let S be an additive subgroup of R such 
that (S, R) = 0. Now we take V={x∈R/ (x, y) = 0, for all y∈R}. From (S, R)=0, it follows that s∈V, where s is in S, and 
V is subring of R. Using these we show that V equals the center C of R, the set I=S+SR is an ideal of R and          
(S+SR)n = Sn+SnR for all positive integers n. Also it is proved that the ideal of R generated by S is nilpotent if and only 
if the subring generated by S is nilpotent.  
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INTRODUCTION 
 
Yen and Hentzel [3] studied the nonassociative rings with the ideal generated by sets contained in two of the three 
nuclei. In this paper we consider R be a nonassociative and noncommutative ring. The associator (a, b, c) and 
commutator (x, y) are defined by (a, b, c) = (ab)c–a(bc), (x, y)=xy-yx for all a, b, c, x, y in R. The nucleus N and center 
C of R are defined by N={n∈R/(n, R, R}= (R, n, R)=(R, R, n=0} and center C={c∈N/(c, R)=0}. The ideal of R is 
nilpotent if there is a positive integer n such that every product involving n elements is zero. In any nonassociative ring 
we have the Teichmuller identity (ab, c, d)-(a, bc, d)+(a, b, cd)=a(b, c, d)+(a, b, c)d. Thus (R, R, R) + (R, R, R)R=(R, 
R, R)+R(R, R, R). Kleinfeld [1] showed that (R, R, R)+(R, R, R)R is an ideal of R. This is called the associator ideal. It 
is the ideal which is generated by all associators. Similarly, we have (R, R)+(R, R)R=(R, R)+R(R, R). Let S be an 
additive subgroup of R such that (S, R) = 0. So S+SR=S+RS. Examples of S are (R, R) and (R, R, R). Now we take 
V={x∈R/ (x, y) = 0, for all y∈R}. From (S, R) = 0, it follows that s∈V where s is in S and V is a subring of R. Using 
these we show that V equals the center C of R. Thus S is contained in the center C of R. Then we prove that the set 
I=S+SR is an ideal of R and (S+SR)n=Sn+SnR for all positive integers n. Also we show that the ideal of R generated by 
S is nilpotent if and only if the subring generated by S is nilpotent.  
 
PRELIMINARIES  
 
Let R be a nonassociative and noncommutative ring. Let S be an additive subgroup of R such that  

(S, R)=0                                                                                                                                                (1)  
 
Now we take V={x∈R/(x, y) = 0, for all y∈R}. From (1) it follows that s∈V where s is in S and V is a subring of R. 
We now prove the following lemmas.  
 
Lemma 1: The set W= {s/s∈V, Rs⊂V} is an ideal of R such that (x, y, s)∈W and (s, y, x)∈W, for s∈V and all x, y∈R. 
 
Proof: From (1), we see that W is a two sided ideal of R. From the Teichmuller identity    
a(b, c, d)+(a, b, c)d = (ab, c, d)-(a, bc, d)+(a, b, cd), which holds in any ring, we get z(x, y, s)=(zx, y, s) -(z, xy, s)      
+(z, x, ys)-(z, x, y)s∈V, since V is a subring of R and (1) holds. Similarly we get z(s, y, x) = (s, y, x)z∈V.  Hence        
(x, y, s)∈W and (s, y, x)∈W.  
     

Corresponding Author: 1M. Manjula Devi*, 1,2Department of Mathematics,  
Sri Krishnadevaraya University, Anantapuramu-515003 (A.P.), India. 

 
 

http://www.rjpa.info/�


1M. Manjula Devi*, 2K. Suvarna / Nilpotency of Ideals Generated by Sets Contained in the Center / IRJPA- 6(3), March-2016. 

© 2016, RJPA. All Rights Reserved                                                                                                                                                                      286 

 
Lemma 2: Let R be a ring without non zero ideals ≠ R satisfying (S, R) = 0. Then V equals the center C of R. 
 
Proof: The ideal W of lemma 1 is contained in V of R. Since R has no non trivial ideal either W=R or W = 0. If W = R, 
then R is commutative, which is a contradiction to our assumption. Hence W ≠ R. So W=0. Then from lemma1 we get 
(x, y, s) = 0 and (s, y, x) = 0, for all s∈S, x, y∈R. We know the semijacobi identity (x, z, y)=(x, y, z)+(z, x, y)-(xy, z)    
+(x, z)y-x(y, z), which holds in any ring, we get (x, s, y) = (x, y, s)+(s, x, y)-(xy, s)+(x, s)y-x(y, s) = 0, from (1),             
(x, y, s) = 0 and (s, y, x)=0. Hence S contained in the nucleus N of R. Therefore V equals the center C of R.     
 
MAIN RESULTS 
 
From lemma 2 we have that S is contained in the center C of R. Let the set I=S+SR. From (1) we have S+SR=S+RS. 
By assumption SR⊂I and Rs⊂I. 
 
Lemma 3: If S is an additive subgroup of R such that (S, R) = 0, then the set I=S+SR is a two sided ideal of R. 
 
Proof: Since S is in the center of R, RI=R(S+SR)=RS+R.SR=RS+RS. R⊂I+IR and IR=(S+RS)R=SR+RS.R=SR+R.SR 
⊂ I+RI. Hence I+IR=I+RI. Now IR=(S+SR)R=SR+SR.R =SR+SR2⊂I. So I is a right ideal of R. Since I+IR=I+RI, we 
have that I is a left ideal of R. Hence I is an ideal of R.           
  
Lemma 4: If S is an additive subgroup of R such that (S, R)=0, then Sn+SnR=Sn+RSn for all positive integers n. 
 

Proof: 
∞

=
Σ

1i
Si is an associative subring contained in the center of R. So (Si, Sj, R) = (Si, R, Sj) = (R, Si, Sj) = 0 for all 

integers i, j > 1. By induction, it is true for n=1. We assume the result for n. Then we get Sn+1R=SnS.R=Sn.SR⊂Sn 
(S+RS)=Sn+1+Sn.RS=Sn+1+SnR.S⊂Sn+1+(Sn+SnR)S=Sn+1+ SnR.S =Sn+1+RSn.S=Sn+1+R.Sn+1 and RSn+1=R.SnS=RSn.S⊂ 
(Sn+SnR)S =Sn+1+ SnR.S=Sn+1 +Sn.RS ⊂Sn+1 +Sn.(S+SR) = Sn+1+Sn.SR=Sn+1+Sn+1.R. 
 
So, Sn+1+Sn+1R=Sn+1+RSn+1, for all positive integers n. This proves the lemma.      
 
Lemma 5: If S is an additive subgroup of R such that (S, R) = 0, then Sn+SnR=Sn+RSn is the ideal of R generated by Sn 
for all positive integers n. 
 
Proof: From lemma 4, we have Sn+SnR=Sn+RSn. If we replace S by Sn in lemma 3, we get the ideal Sn+SnR=Sn+RSn, 
where n is any positive integer.        
 
Lemma 6: If S is an additive subgroup of R such that (S, R) = 0, then SiR.SjR⊂Si+j+Si+jR for all integers i, j > 1. 
 
Proof: Since S is in the center C of R, by lemma 5, SiR.SjR=Si.R(SjR)⊂Si.(SjR)⊂Si(Sj+SjR)=Si+j+Si(SjR)=Si+j+ 
(Si.Sj).R=Si+j+Si+jR.          
 
Lemma 7: If S is an additive subgroup of R such that (S, R) = 0, then SiR.Sj⊂Si+j+Si+jR for all integers i, j > 1. 
 
Proof: Since S is in the center C of R and using lemma 5, SiR.Sj=Si.RSj⊂Si(Sj+SjR) =Si+j+Si.SjR = Si+j+Si+j.R.   
 
Lemma 8: If S is an additive subgroup of R such that (S, R) = 0, then (S+SR)n = Sn+SnR for all positive integers n. 
 
Proof: We assume the result for all positive integers m < n. Then using this inductive hypothesis, the lemma 7 and 
lemma 6 for all integers i and j, I <n and j<n, we get (S+SR)i+j=(S+SR)i (S+SR)j=(Si+SiR) (Sj+SjR) =Si+j+Si.SjR+ 
SiR.Sj+SiR.SjR = Si+j+SiSj.R+SiR.Sj+SiR.SjR=Si+j+Si+jR.  
 
Therefore (S+SR)i+j = Si+j+Si+jR. 
 
This proves the lemma            
 
Now we prove the following theorem.  
 
Theorem: Let R be a non associative, non commutative ring and S be an additive subgroup of R such that (S, R) = 0. 
The ideal of R generated by S is nilpotent if and only if the subring generated by S in nilpotent.    
 
Proof: If the ideal of R generated by S is nilpotent then (S+SR)n = 0. From lemma 8 it follows that Sn+SnR = 0. So the 
subring generated by S is nilpotent. The converse follows similarly.  
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