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ABSTRACT 
The vertices and edges of a graph G are called the elements of G. If e=uv is an edge of G, then the vertex u and edge e 
are incident as are v and e. We introduce the first and second K hyper-Banhatti indices to take account of the 
contributions of pairs of incident elements. Also we introduce the first and second K hyper-Banhatti coindices to take 
account the contributions of pairs of nonincident elements. In this paper, we obtain the exact values of the first and 
second K hyper-Banhatti indices for some standard graphs. 
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1. INTRODUCTION 
 
The graphs considered here are finite, undirected without isolated vertices, loops and multiple edges. Any undefined 
term in this paper may be found in Kulli [1]. 
 
Let G=(V, E) be a graph with |V| = n vertices and |E| = m edges. The degree dG(v) of a vertex v is the number of vertices 
adjacent to v. The edge connecting the vertices u and v is denoted by uv. If e=uv is an edge of G, then the vertex u and 
edge e are incident as are v and e. Let dG(e) denote the degree of an edge e in G, which is defined by                         
dG(e) = dG(u) + dG(v) – 2 with e=uv. The vertices and edges of a graph are called its elements. 
 
A molecular graph is a simple graph such that its vertices correspond to the atoms and the edges to the bonds. Chemical 
graph theory is a branch of mathematical chemistry which has an important effect on the development of the chemical 
sciences. 
 
In Chemical Science, the physico-chemical properties of chemical compounds are often modeled by means of 
molecular graph based structure descriptors, which are also referred to as topological indices, see [2]. 
 
In [3], Kulli introduced the first and second K Banhatti indices to take account of the contributions of pairs of incident 
elements. 
 
The first K Banhatti index B1(G) and the second K Banhatti index B2(G) of a graph G are defined as 

( ) ( ) ( )1 G G
ue

B G d u d e=  +  ∑  

( ) ( ) ( )2 G G
ue

B G d u d v= ∑  

where ue means that the vertex u and edge e are incident in G. 
 
In [3], Kulli introduced the first and second K Banhatti coindices to take account of the contributions of pairs of 
nonincident elements. 
 
The first K Banhatti coindex ( )1B G and the second K Banhatti coindex ( )2B G of a graph G are defined as 

( ) ( ) ( )1
*

G G
u e

B G d u d e=  +  ∑  

( ) ( ) ( )2
*

G G
u e

B G d u d e= ∑  

where u * e means that the vertex u and edge e are nonincident in G. 
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Recently many other indices and coindices were studied, for example, in [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]. 
 
In this paper, we introduce K hyper-Banhatti indices and coindices of graphs. Recently many other hyper indices and 
coindices were studied, for example, in [17, 18, 19, 20, 21]. 

 
2. FIRST K HYPER-BANHATTI INDEX 
 
We introduce the first K hyper-Banhatti index of a graph in terms of incident vertex-edge degrees. 
 
Definition 1: The first K hyper-Banhatti index of a graph G is defined as  

( ) ( ) ( ) 2
1 G G

ue
HB G d u d e=  +  ∑  

where ue means that the vertex u and edge e are incident in G. 
 
The following are the first K hyper-Banhatti index for cycles, complete graphs, complete bipartite graphs. 
 
Proposition 2: Let Cn be a cycle with n ≥ 3 vertices. Then 

HB1(Cn) = 32n. 
 
Proof: Let Cn be a cycle with n ≥ 3 vertices. Every vertex of Cn is incident with exactly two edges. Consider 

HB1(Cn) = ( ) ( )
2

n nC C
ue

d u d e + ∑  

 ( ) ( ) 2

n n

i j

C i C j
u e

d u d e = + ∑∑  

 ( )
2

22 2
i j

n

u e
= +∑∑  

 ( )22 4
i

n

u
= ∑  

  = 32n. 
 
Proposition 3: Let Kn be a complete graph with n vertices. Then 

HB1(Kn) = n(n – 1) (3n – 5)2. 
 
Proof: Let Kn be a complete graph with n vertices. Every vertex of Kn is incident with n – 1 edges. Consider 

 HB1(Kn) = ( ) ( )
2

n nK K
ue

d u d e + ∑  

( ) ( ) 2

n n

i j

K i K j
u e

d u d e = + ∑∑  

( ) ( )
1 2

1 2 4
i j

n n

u e
n n

−

=  − + −  ∑∑  

( )( )21 3 5
i

n

u
n n= − −∑  

 = n(n – 1)(3n – 5)2. 
 
Proposition 4: Let Km, n be a complete bipartite graph. Then 

HB1(Km, n) = mn[(m + 2n – 2)2 + (2m + n – 2)2]. 
 
Proof: Let Km, n be a complete bipartite graph with m+n vertices and |V1| = m, |V2| = n, V(Km, n) = V1∪V2. Every vertex 
of V1 is incident with n edges and every vertex of V2 is incident with m edges. Let V1 = {v1, v2, ..., vm} and V2 = {w1, w2, 
..., wn}. Consider 

( ) ( ) ( )
, ,

2

1 , m n m nm n K K
ue

HB K d u d e = + ∑  

( ) ( ) ( ) ( )
, , , ,

2
2

m n m n m n m n

i j j i

m n n m

K i K j K j K i
v e w e

d v d e d w d e   = + + +   ∑∑ ∑∑  

( ) ( )2 2
2 2

i j j i

m n n m

v e w e
n m n m m n=  + + −  +  + + −    ∑∑ ∑∑  
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( ) ( )2 22 2 2 2
i j

m n

v w
n m n m m n   = + − + + −   ∑ ∑  

= mn(m + 2n – 2)2 + nm(2m + n – 2)2 

= mn[(m + 2n – 2)2 + (2m + n – 2)2]. 
 
The following results are immediate from Proposition 4. 
 
Corollary 5: Let Kn, n be a complete bipartite graph. Then 

( ) ( )22
1 , 2 3 2 .n nHB K n n= −  

 
Corollary 6: Let K1, n be a star. Then 

( ) ( )2
1 1, 5 4 1 .nHB K n n n= − +  

 
Theorem 7: Let G be an r -regular graph with n vertices. Then 

( ) ( )2
1 3 2 .HB G nr r= −  

 
Proof: Let G be an r -regular graph with n vertices. Every vertex of G is incident with r edges. Consider 

( ) ( ) ( ) 2
1 G G

ue
HB G d u d e=  +  ∑  

 ( ) 2
2 2

i j

n r

u e
r r=  + −  ∑∑  

 ( )23 2
i

n

u
r r= −∑  

  = nr(3r – 2)2. 
 
3. SECOND K HYPER-BANHATTI INDEX 
 
We introduce the second K hyper-Banhatti index of a graph in terms of incident vertex-edge degrees. 
 
Definition 8: The second K hyper-Banhatti index of a graph G is defined as 

( ) ( ) ( )( )2
2 G G

ue
HB G d u d e= ∑  

where ue means that the vertex u and edge e are incident in G. 
 
The following are the second K hyper-Banhatti index for cycles, complete graphs, complete bipartite graphs. 
 
Proposition 9: Let Cn be a cycle with n ≥ 3 vertices. Then 

HB2(Cn) = 32n. 
 
Proof: Let Cn be a cycle with n vertices. Every vertex of Cn is incident with exactly two edges. Consider 

( ) ( ) ( )( )2

2 n nn C C
ue

HB C d u d e= ∑  

( ) ( )( )2

n n

i j

C i C j
u u

d u d e= ∑∑  

( )
2

22 2
i j

n

u e
= ×∑∑  

( )( )22 4
i

n

u
= ∑  

 = 32n. 
 

Proposition 10: Let Kn be a complete graph with n vertices. Then 
HB2(Kn) = 4n(n – 1)3 (n – 2)2. 

 
Proof: Let Kn be a complete graph with n vertices. Every vertex of Kn is incident with n–1   edges. Consider 
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( ) ( ) ( )( )2

2 n nn K K
ue

HB K d u d e= ∑  

( ) ( )( )2

n n

i j

K i K j
u e

d u d e= ∑∑  

( )( )( )
1 2

1 2 4
i j

n n

u e
n n

−

= − −∑∑  

( )( ) ( )2 21 1 2 4
i

n

u
n n n= − − −∑  

 = 4n(n – 1)3 (n – 2)2. 
 
Proposition 11: Let Km, n be a complete bipartite graph. Then 

( ) ( )( )22 2
2 , 2 .m nHB K mn m n m n= + + −  

 
Proof: Let Km, n be a complete bipartite graph with m+n vertices and |V1|=m, |V2|=n, V(Km,n) = V1∪V2. Every vertex of 
V1 is incident with n edges and every vertex of V2 is incident with m edges. Let V1 = {v1, v2, ..., vm} and V2 = {w1, w2, ..., 
wn}. Consider 

( ) ( ) ( )( ), ,

2

2 , m n m nm n K K
ue

HB K d u d e= ∑  

 = ( ) ( )( ) ( ) ( )( ), , , ,

2 2

m n m n m n m n

i j j i

m n n m

K i K j K j K i
v e w e

d v d e d w d e+∑∑ ∑∑  

( ) ( )2 22 22 2
i j j i

m n n m

v e w e
n m n m m n= + − + + −∑∑ ∑∑  

( ) ( )2 23 32 2
i j

m n

v w
n m n m m n= + − + + −∑ ∑  

 = mn3(m + n – 2)2 + nm3(m + n – 2)2 
 = mn (n2 + m2) (m + n – 2)2. 

 
The following results are immediate from Proposition 11. 
 
Corollary 12: Let Kn, n be a complete bipartite graph. Then 

( ) ( )24
2 , 8 1 .n nHB K n n= −  

 
Corollary 13: Let K1, n be a star. Then 

( ) ( )( )22
2 1, 1 1 .nHB K n n n= + −  

 
Theorem 14: Let G be an r-regular graph with n vertices. Then 

( ) ( )23
2 4 1 .HB G nr r= −  

 
Proof: Let G be an r-regular graph with n vertices. Then every vertex of G is incident with r edges. Consider 

( ) ( ) ( )( )2
2 G G

ue
HB G d u d e= ∑  

 ( )( )2
2 2

i j

n r

u e
r r= −∑∑  

 ( )23 2 2
i

n

u
r r= −∑  

 ( )234 1 .nr r= −  

  
4. K HYPER-BANHATTI COINDICES 
 
We define K hyper-Banhatti coindices of a graph in terms of nonincident vertex-edge degrees. 
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Definition 15: The first and second K hyper-Banhatti coindices of a graph G are defined as 

( ) ( ) ( ) 2
1 G G

u e
HB G d u d e

∗

=  +  ∑  

( ) ( ) ( )( )2
2 G G

u e
HB G d u d e

∗

= ∑  

where u * e means that the vertex u and edge e are not incident elements in G. 
 
We study these invariants in a separate paper. 
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